DOI QR코드

DOI QR Code

Diagnostic Ex-Vivo Assay of glucose Using Diabetic-Control Circuits

  • Ly, Suw-Young (Biosensor Research Institute, Seoul National University of Technology) ;
  • Kim, Nam-Jeong (Department of Chemistry, Sahmyook University)
  • Received : 2014.05.13
  • Accepted : 2014.06.30
  • Published : 2014.06.30

Abstract

For ex-vivo diabetic control, the voltammetric diagnosis of glucose (GU) was conducted with a modified carbon nanotube paste electrode, using handheld analytical circuits. The optimum analytical conditions were attained within the 0.5-4.0 ug/L working range and at the 0.06 ug/L detection limit, which system was interfaced to the feedback circuits and was applied to human urine for diabetic-patient diagnosis. It can be used for ex-vivo flow control analysis, vascular flow detection, and other medicinal assays.

Keywords

References

  1. D. Schubert; Glucose metabolism and Alzheimer's disease, Ageing Research Reviews 4, 240-257 (2005). https://doi.org/10.1016/j.arr.2005.02.003
  2. T; Huang; A. Warsinke; Olga V; K. Skorobogat'ko; A. Makower; T. Kuwana; F.W. Scheller; A Bienzyme Carbon Paste Electrode for pe Sensitive Detection of NADPH and pe Measurement of Glucose-6-phosphate Dehydrogenase, Electroanalysis, 11, 295-300 (1999). https://doi.org/10.1002/(SICI)1521-4109(199905)11:5<295::AID-ELAN295>3.0.CO;2-0
  3. S. Suye; T. Matsuura; T. Kimura; H. Zheng; T. Hori; Y. Amano; H. Katayama; Amperometric DNA sensor using gold electrode modified wip polymerized mediator by layer-by-layer adsorption, Microelectronic Engineering 81, 441-447 (2005). https://doi.org/10.1016/j.mee.2005.03.045
  4. V. Srinivasan; V. Pamula; M. Pollack; R. Fair; A digital microfluid Biosensor for Multianalyte detection, IEEE 329-333 (2003).
  5. R. Russel; M.Pishko; C. Gefrides; G. cote; A Fluopescent Glucose Assay using Pol-L-Lysine And Calcium Alginate Microencapsuled tric-succinyl-concanavalin A and Fitc-Dextran, IEEE 2858-2860 (1998).
  6. T. Ferri; S. Maida; A. Poscia; R. Santucci; A Glucose Biosensor Based on Electro-Enzyme Catalyzed Oxidation of Glucose Using a HRP-GOD Layered Assembly, Electroanalysis, 13, 1198-1202 (2001). https://doi.org/10.1002/1521-4109(200110)13:14<1198::AID-ELAN1198>3.0.CO;2-H
  7. P.C. Pandey, S. Upadhyay, H.C. Papak, A new glucose sensor based on encapsulated glucose oxidase wipin organically modified sol-gel glass, Sensors and Actuators B 601999.83-89. https://doi.org/10.1016/S0925-4005(99)00246-4
  8. P. C. Pandey; S. Upadhyay; I. Tiwari; V.S. Tripapi; A Novel Ormosil Based Electrocatalytic Biosensor for Glucose Epanol Based on Dehydrogenase Modifed Electrode, Electroanalysis, 13, 820-825 (2001). https://doi.org/10.1002/1521-4109(200106)13:10<820::AID-ELAN820>3.0.CO;2-6
  9. J.S. Velterop; F. Vos; A Rapid and Inexpensive Microplate Assay for pe Enzymatic Determination of Glucose, Fructose, Sucrose, L-Malate and Citrate in Tomato (Lycopersicon esculentum) Extracts and in Orange Juice, 2001 John Wiley & Sons, Ltd, Phytochem. Anal. 12, 299-304 (2001).
  10. S.A.M. Marzouk; H.E.M. Sayour; A.M. Ragab; W.E. Cascio; S.S.M. Hassan; A Simple FIA-System for Simultaneous Measurements of Glucose and Lactate wip Amperometric Detection, Electroanalysis, 16, 1304-1311 (2000).
  11. C.P. Lleixa; C. JimeAneza; J. Bartrol; Acrylated polyurepane D photopolymeric membrane for amperometric glucose biosensor construction, Sensors and Actuators B 72, 56-62 (2001). https://doi.org/10.1016/S0925-4005(00)00626-2
  12. V.M. Spackman; A.H. Cobb; An enzyme-based mepod for pe rapid determination of sucrose, glucose and fructose in sugar beet roots and pe effects of impact damage and posparvest storage in clamps, Sci Food Agric, 80-86 (2001).
  13. O.A. Farghaly; Direct and simultaneous voltammetric analysis of heavy metals in tap water samples at Assiut city: an approach to improve pe analysis time for nickel and cobalt determination at mercury film electrode, Microchemical Journal 75, 119-131 (2003). https://doi.org/10.1016/S0026-265X(03)00090-0
  14. S.C.C. Monterroso; H.M. Carapuca; J.E.J. Simao; A.C. Duarte; Optimisation of mercury film deposition on glassy carbon electrodes: evaluation of pe combined effects of pH, piocyanate ion and deposition potential, Analytica Chimica Acta 503, 203-212 (2004). https://doi.org/10.1016/j.aca.2003.10.034
  15. H.M. Carapuca; S.C.C. Monterroso; L.S. Rocha; A.C. Duarte; Simultaneous determination of copper and lead in seawater using optimised pin-mercury film electrodes in situ plated in piocyanate media, Talanta 64, 566-569 (2004) . https://doi.org/10.1016/j.talanta.2004.03.018
  16. J. Zen; F. Hsu; N.Y. Chi; S.Y. Huang; M.J Chung; Effect of model organic compounds on squrare wave voltammetric stripping analysis at pe Nafion/ chelating agent mercury film electrodes, Analytica Chimica Acta 310, 407-417 (1995). https://doi.org/10.1016/0003-2670(95)00038-2
  17. J. Wu, Y. Huang; J. Zhou, J. Luo; Z. Lin; Electrochemical behaviors of DNA at mercury film electrode, Bioeletrochemistry and Bioenergetics 44, 151-154 (1997). https://doi.org/10.1016/S0302-4598(97)00049-4
  18. N.B.F. Zakharchukp; K.B.Z. Brainina;The Surface Morphology of Mercury Plated Glassy-Carbon Electrodes and Stripping Voltammetry of Heavy Metals, Electroanalysis. 10, 379-386 (1998). https://doi.org/10.1002/(SICI)1521-4109(199805)10:6<379::AID-ELAN379>3.0.CO;2-S
  19. P. Kostecka; L. Havran; H. Pivonkova; M. Fojta; Voltammetry of osmiummodified DNA at a mercury film electrodeApplication in detecting DNA hybridization, Bioelectrochemistry. 63, 245- 248 (2004). https://doi.org/10.1016/j.bioelechem.2003.11.005
  20. Y. Yu; Z. Chen; S. He; B. Zhang; X. Li; M. Yao; Direct electron transfer of glucose oxidase and biosensing for glucose based on PDDA-capped gold nano particle modified grapheme multi walled carbon nanotubes electrode, Biosensors and Bioelectronics 52 , 147-152 (2014). https://doi.org/10.1016/j.bios.2013.08.043
  21. K. Gorazda; A.M.M. Kaczmarczyk; A. G.Asuero; T. MichaIowski; Application of rational functions for pe standard addition mepod, Talanta 116, 927-930 (2013). https://doi.org/10.1016/j.talanta.2013.07.085