DOI QR코드

DOI QR Code

The effect of hypersonic wave sound for EEG

초음파가 뇌파에 미치는 영향

  • Received : 2013.05.14
  • Accepted : 2014.06.30
  • Published : 2014.06.30

Abstract

High-frequency is sound produced in non-audible area, which couldn't be heard in daily life. The frequency range above 22Khz is called 'high-frequency' and its components are called 'HFC(High-Frequency Components)'. It is known that ocean wave sound is rich in HFC, because it brings serenity and causes ${\alpha}$-waves in human mind. When this natural sound is combined with high-frequency, it seems to give a pleasurable feeling, indicated by an ${\alpha}$-wave increase and a ${\beta}$-wave decrease. We call this phenomena "the hypersonic effects". In this experiment, subjects listened to the ocean wave sound simultaneously with corresponding frequencies similar to ocean wave frequency components created artificially in a electric circuit. Brain waves were measured by an EEG system with 8 channels using 8 electrodes on Fp1, Fp2, F3, F4, T3, T4, O1, and O2. The results showed that ${\alpha}$-wave increase and ${\beta}$-wave decrease were statistically significant while subjects were listening to the ocean wave sound along with the high frequency components, reflecting the hypersonic effect.

초음파는 비가청영역에서 나는 사운드이며 일상생활에서는 들을 수 없다. 초음파는 22kHz 이상의 주파수를 말하며 또한 이러한 성분을 초음파 성분 HFCs(High Frequency components)라고 한다. 파도소리는 사람에게 안정감과 알파파를 유도한다고 알려졌는데 이러한 이유는 파도소리에 초음파 성분이 매우 많다는 것이다. 이러한 초음파가 파도소리와 합쳐질 때 쾌감을 주고 알파파 증가와 베타파가 감소하는 초고주파효과(hypersonic effect)라고 한다. 본 실험에서는 파도소리를 들려주면서 동시에 파도소리에 해당되는 초음파부분을 전자회로로 설계하여 인위적으로 파도소리의 초음파 성분과 유사하도록 제작하여 실험하였다. 뇌파는 8채널을 사용하여 Fp1, Fp2, F3, F4, T3, T4, O1, O2 의 총 8개 전극을 부착하였다. 뇌파에서는 집중이나 긴장이완 등이 나타날 때 알파파가 나타나며 각성상태나 긴장상태 그리고 스트레스상태에서는 주로 베타파가 나타난다. 초음파 실험결과 연구대상자들의 알파파가 증가하고 베타파가 감소하는 현상이 통계적으로 유의미하게 나타났으며 초고주파현상이 반영되는 결과가 나타났다.

Keywords

References

  1. Choi Jong In, Hotta Kenji, Yamazaki Ken(2000). A fundamental study on the effects of the natural ultra-sonic waves stimulus acting to human, J of Japan Architectures, No.4035, 509-511.
  2. Cowan, J. & Allen, T. (2000). Using brainwave biofeedback to train the sequence of concentration and relaxation in athletic activities. Proceedings of 15th Association for the Advancement of Applied Sport Psychology, 95.
  3. Debener, S., Herrmann, C. S., Kranczioch, C., Gembris, D., & Engel, A. K. (2003). Top-down attentional processing enhances auditory evoked gamma band activity. Neuroreport, Vol 14(5), 683-686. https://doi.org/10.1097/00001756-200304150-00005
  4. Hosoi H, Imaizumi S, Sakaguchi T, Tonoike M, and Murata K. (1998). Activation of the auditory cortex by ultrasound. Lancet 351: 496-497 https://doi.org/10.1016/S0140-6736(05)78683-9
  5. Hotta Kenji, Yonezawa Naoki, Kamata Yasutaka.(1998). A study of physoilogical effects caused by coasstal ultrasonic wave influences to human brain waves. Journal of Architectural Institue of Janpan, Vol3, No.10018, 315-316.
  6. Jang. C. W (2001). Effect of concentration training with brainwave biofeedback on tennis performance. (뇌파조절을 통한 집중력 훈련이 테니스 경기 수행력에 미치는 영향), Seoul National University Press.
  7. Jang, S. W (2011). A study of personality type & evoked potentials. (성격유형과 유발전위) Korean Journal of the science of Emotion & sensibility, Vol.14. No.1, 137-146.
  8. Jo, S, H (2001) The analysis of electroencephalogram between brain respiration trained students and general students during learning activities. (학습활동시 뇌호흡 수련학생과 일반학생의 뇌파분석), Seoul National University Press.
  9. Johnston, W.A & Dark, V.J.(1986). Selective attention. Annual Review of Psychology, Vol 37: 43-75. https://doi.org/10.1146/annurev.ps.37.020186.000355
  10. Kim, Y. J (2000). Development of a brain-cycle learning model based on the electroencephalographic analysis of learning activities and its application to science learning.(학습 활동의 뇌파 분석에 기초한 두뇌순환 학습 모형의 개발과 과학학습에의 적용), Seoul National University Press.
  11. Lee, Y, H (2003). The effect of attention and memory on alpha wave - Relax training program in students with cerebral palsy. (알파파 유발 이완훈련이 뇌성마비 학생의 주의집중과 기억에 미치는 효과) University of Daegu Press.
  12. Oohashi, T., Nishina, E., Kawai, N., Fuwamoto, Y., Imai, H., (1991). High-frequency sound above the audible range affects brain electric activity and sound perception. Proceedings of 91st Audio Engineering Society convention. Audio Engineering Society, New York.
  13. Oohashi, T., Nishina, E., Honda, M., (2002). Multidisciplinary study on the hypersonic effect. In: Shibasaki, H., Fukuyama, H.,Nagamine, T., Mima, T. (Eds.), Inter-Areal Coupling of Human Brain Function. Elsevier Science, Amsterdam, 27-42.
  14. Tsutomu, Oohashi, Emi Nishina et al. (2000). Inaudible High-Frequency Sounds Affect Brain Activity: Hypersonic Effect, The American Physiological Society, J Neurophysiol Vol 83: 3548-3558. https://doi.org/10.1152/jn.2000.83.6.3548
  15. Tsutomu Oohashi, Norie Kqwai, Emi Nishina et al. (2006). The role of biological system other than auditory air-conduction in the emergence of the hypersonic effect. Brain Reserch, 1073-1074, 2006, 339-347 https://doi.org/10.1016/j.brainres.2005.12.096
  16. Walter, J. L. (1953). Alpha EEG correlates of performance on a music recognition test. Physiological Psycholgy, Vol 8, 417-420.