DOI QR코드

DOI QR Code

Complete $^1H$-NMR and $^{13}C$-NMR spectral analysis of the pairs of 20(S) and 20(R) ginsenosides

  • Received : 2013.10.08
  • Accepted : 2014.03.12
  • Published : 2014.07.15

Abstract

Background: Ginsenosides, the major ingredients of Panax ginseng, have been studied for many decades in Asian countries as a result of their wide range of pharmacological properties. The less polar ginsenosides, with one or two sugar residues, are not present in nature and are produced during manufacturing processes by methods such as heating, steaming, acid hydrolysis, and enzyme reactions. $^1H$-NMR and $^{13}C$-NMR spectroscopic data for the identification of the less polar ginsenosides are often unavailable or incomplete. Methods: We isolated 21 compounds, including 10 pairs of 20(S) and 20(R) less polar ginsenosides (1-20), and an oleanane-type triterpene (21) from a processed ginseng preparation and obtained complete $^1H$-NMR and $^{13}C$-NMR spectroscopic data for the following compounds, referred to as compounds 1-21 for rapid identification: 20(S)-ginsenosides Rh2 (1), 20(R)-Rh2 (2), 20(S)-Rg3 (3), 20(R)-Rg3 (4), 6'-O-acetyl-20(S)-Rh2 [20(S)-AcetylRh2] (5), 20(R)-AcetylRh2 (6), 25-hydroxy-20(S)-Rh2 (7), 25-hydroxy-20(S)-Rh2 (8), 20(S)-Rh1 (9), 20(R)-Rh1 (10), 20(S)-Rg2 (11), 20(R)-Rg2 (12), 25-hydroxy-20(S)-Rh1 (13), 25-hydroxy-20(R)-Rh1 (14), 20(S)-AcetylRg2 (15), 20(R)-AcetylRg2 (16), Rh4 (17), Rg5 (18), Rk1 (19), 25-hydroxy-Rh4 (20), and oleanolic acid 28-O-b-D-glucopyranoside (21).

Keywords

References

  1. Jia L, Zhao Y, Liang XJ. Current evaluation of the millennium phytomedicineginseng (II): collected chemical entities, modern pharmacology, and clinical applications emanated from traditional Chinese medicine. Curr Med Chem 2009;16:2924-42. https://doi.org/10.2174/092986709788803204
  2. Popovich DG, Yeo CR, Zhang W. Ginsenosides derived from Asian (Panax ginseng), American ginseng (Panax quinquefolius) and potential cytoactivity. Int J Biomed Pharm Sci 2011;6:56-62.
  3. Lee SM, Shon HJ, Choi CS, Hung TM, Min BS, Bae K. Ginsenosides from heat processed ginseng. Chem Pharm Bull (Tokyo) 2009;57:92-4. https://doi.org/10.1248/cpb.57.92
  4. Yoon SR, Lee GD, Park JH, Lee IS, Kwon JH. Ginsenoside composition and antiproliferative activities of explosively puffed ginseng (Panax ginseng C.A. Meyer). J Food Sci 2010;75:C378-82. https://doi.org/10.1111/j.1750-3841.2010.01592.x
  5. Park CS, Yoo MH, Noh KH, Oh DK. Biotransformation of ginsenosides by hydrolyzing the sugar moieties of ginsenosides using microbial glycosidases. Appl Microbiol Biotechnol 2010;87:9-19. https://doi.org/10.1007/s00253-010-2567-6
  6. Kim WY, Kim JM, Han SB, Lee SK, Kim ND, Park MK, Kim CK, Park JH. Steaming of ginseng at high temperature enhances biological activity. J Nat Prod 2000;63:1702-4. https://doi.org/10.1021/np990152b
  7. Sun BS, Xu MY, Li Z, Wang YB, Sung CK. UPLC-Q-TOF-MS/MS Analysis for steaming times-dependent profiling of steamed Panax quinquefolius and its ginsenosides transformations induced by repetitious steaming. J Ginseng Res 2012;36:277-90. https://doi.org/10.5142/jgr.2012.36.3.277
  8. Kang KS, Kim HY, Baek SH, Yoo HH, Park JH, Yokozawa T. Study on the hydroxyl radical scavenging activity changes of ginseng and ginsenoside-Rb2 by heat processing. Biol Pharm Bull 2007;30:724-8. https://doi.org/10.1248/bpb.30.724
  9. Zhan X, Song FR, Cui M, Liu ZQ, Liu SY. Investigation of the hydrolysis of ginsenosides by high performance liquid chromatography-electrospray ionization mass spectrometry. Planta Med 2007;73:1225-9. https://doi.org/10.1055/s-2007-981590
  10. Park IH, Han SB, Kim JM, Piao LZ, Kwon SW, Kim NY, Kang TL, Park MK, Park JH. Four new acetylated ginsenosides from processed ginseng (sun ginseng). Arch Pharm Res 2002;25:837-41. https://doi.org/10.1007/BF02977001
  11. Zhang HM, Li SL, Zhang H, Wang Y, Zhao ZL, Chen SL, Xu HX. Holistic quality evaluation of commercial white and red ginseng using a UPLCQTOF-MS/MS-based metabolomics approach. J Pharm Biomed Anal 2012;62:258-73. https://doi.org/10.1016/j.jpba.2012.01.010
  12. Qi LW, Wang CZ, Yuan CS. American ginseng: potential structure-function relationship in cancer chemoprevention. Biochem Pharmacol 2010;80:947-54. https://doi.org/10.1016/j.bcp.2010.06.023
  13. Yang H, Yoo G, Kim HS, Kim JY, Kim SO, Yoo YH, Sung SH. Implication of the stereoisomers of ginsenoside derivatives in the antiproliferative effect of HSCT6 cells. J Agri Food Chem 2012;60:11759-64. https://doi.org/10.1021/jf303714c
  14. Wang W, Zhao YQ, Rayburn ER, Hill DL, Wang H, Zhang RW. In vitro anticancer activity and structure-activity relationships of natural products isolated from fruits of Panax ginseng. Cancer Chemother Pharm 2007;59:589-601. https://doi.org/10.1007/s00280-006-0300-z
  15. Baek N, Kim DS, Lee YH, Park JD, Jeong SY, Lee CB, Kim SI. Complete assignment of $^1H$ and $^{13}C$-NMR signals for (20S) and (20R)-protopanaxadiol by 2DNMR techniques. Korean J Ginseng Sci 1995;19:45-50.
  16. Teng RW, Ang C, McManus D, Armstrong D, Mau S, Bacic A. Regioselective acylation of ginsenosides by Novozyme 435 to generate molecular diversity. Helv Chim Acta 2004;87:1860-72. https://doi.org/10.1002/hlca.200490165
  17. Teng RW, Li HZ, Chen JT, Wang DZ, He YN, Yang CR. Complete assignment of H-1 and C-13 NMR data for nine protopanaxatriol glycosides. Magn Reson Chem 2002;40:483-8. https://doi.org/10.1002/mrc.1033
  18. Liao PY, Wang D, Zhang YJ, Yang CR. Dammarane-type glycosides from steamed notoginseng. J Agri Food Chem 2008;56:1751-6. https://doi.org/10.1021/jf073000s
  19. Chen G, Yang M, Lu Z, Zhang J, Huang H, Liang Y, Guan S, Song Y, Wu L, Guo DA. Microbial transformation of 20(S)-protopanaxatriol-type saponins by Absidia coerulea. J Nat Prod 2007;70:1203-6. https://doi.org/10.1021/np070053v
  20. Jia JM, Wang ZQ, Wu LJ. Two new acetylated ginsenosides from the roots of Panax quinquefolium. Chinese Chem Lett 2008;19:1099-102. https://doi.org/10.1016/j.cclet.2008.06.033
  21. Liu JW, Tian SJ, de Barry J, Luu B. Panaxadiol glycosides that induce neuronal differentiation in neurosphere stem cells. J Nat Prod 2007;70:1329-34. https://doi.org/10.1021/np070135j
  22. Yin M, Wang XY, Wang M, Chen Y, Dong YF, Zhao YY, Feng X. A new triterpenoid saponin and other saponins from Salicornia europaea. Chem Nat Compd 2012;48:258-61. https://doi.org/10.1007/s10600-012-0216-2
  23. Li SL, Lai SF, Song JZ, Qiao CF, Liu X, Zhou Y, Cai H, Cai BC, Xu HX. Decoctinginduced chemical transformations and global quality of Du-Shen-Tang, the decoction of ginseng evaluated by UPLC-Q-TOF-MS/MS based chemical profiling approach. J Pharm Biomed Anal 2010;53:946-57. https://doi.org/10.1016/j.jpba.2010.07.001
  24. Wu LJ, Wang LB, Gao HY, Wu B, Song XM, Tang ZS. A new compound from the leaves of Panax ginseng. Fitoterapia 2007;78:556-60. https://doi.org/10.1016/j.fitote.2007.06.002
  25. Teng RW, Li HZ, Wang DZ, Yang CR. Hydrolytic reaction of plant extracts to generate molecular diversity: new dammarane glycosides from the mild acid hydrolysate of root saponins of Panax notoginseng. Helv Chim Acta 2004;87: 1270-8. https://doi.org/10.1002/hlca.200490116
  26. Wan J-Y, Liu P, Wang H-Y, Qi L-W, Wang C-Z, Li P, Yuan C-S. Biotransformation and metabolic profile of American ginseng saponins with human intestinal microflora by liquid chromatography quadrupole time-of-flight mass spectrometry. J Chromatogr A 2013;1286:83-92. https://doi.org/10.1016/j.chroma.2013.02.053

Cited by

  1. Biotransformation of Ginsenosides Re and Rg1 by the Bacterium Microbacterium sp. GT35 vol.51, pp.1, 2014, https://doi.org/10.1007/s10600-015-1208-9
  2. Conformational studies of dammarane‐type triterpenoids using computational and NMR spectroscopic methods vol.53, pp.12, 2014, https://doi.org/10.1002/mrc.4302
  3. Fermented Ginseng Contains an Agonist of Peroxisome Proliferator Activated Receptors α and γ vol.19, pp.9, 2014, https://doi.org/10.1089/jmf.2016.3673
  4. Ginsenoside Rg5 Ameliorates Cisplatin-Induced Nephrotoxicity in Mice through Inhibition of Inflammation, Oxidative Stress, and Apoptosis vol.8, pp.9, 2016, https://doi.org/10.3390/nu8090566
  5. Cyclopenta[b]benzofuran and Secodammarane Derivatives from the Stems of Aglaia stellatopilosa vol.79, pp.4, 2014, https://doi.org/10.1021/acs.jnatprod.5b00810
  6. Biotransformation of Ginsenosides Re and Rg1 into Rg2 and Rh1 by Thermostable β-Glucosidase from Thermotoga thermarum vol.53, pp.3, 2017, https://doi.org/10.1007/s10600-017-2025-0
  7. Inhibitory Effect of Triterpenoids from Panax ginseng on Coagulation Factor X vol.22, pp.4, 2017, https://doi.org/10.3390/molecules22040649
  8. Stereoisomers of Saponins in Panax notoginseng (Sanqi): A Review vol.9, pp.None, 2018, https://doi.org/10.3389/fphar.2018.00188
  9. Preparation and Vasodilatory Activity of Rare Ginsenosides vol.54, pp.6, 2014, https://doi.org/10.1007/s10600-018-2589-3
  10. Converting ginsenosides from stems and leaves of Panax notoginseng by microwave processing and improving their anticoagulant and anticancer activities vol.8, pp.70, 2014, https://doi.org/10.1039/c8ra08021f
  11. Increase in Protective Effect of Panax vietnamensis by Heat Processing on Cisplatin-Induced Kidney Cell Toxicity vol.24, pp.24, 2014, https://doi.org/10.3390/molecules24244627
  12. Anti-inflammatory and Immunosuppressive Effects of Panax notoginseng vol.25, pp.4, 2014, https://doi.org/10.20307/nps.2019.25.4.317
  13. New dammarane-type triterpenoid glycosides from Gynostemma burmanicum vol.34, pp.2, 2014, https://doi.org/10.1080/14786419.2018.1527831
  14. Highly regioselective bioconversion of ginsenoside Re into 20(S/R)-Rf2 by an optimized culture of Cordyceps sinensis vol.44, pp.33, 2014, https://doi.org/10.1039/d0nj01828g
  15. Screening ginseng saponins in progenitor cells identifies 20(R)-ginsenoside Rh 2 as an enhancer of skeletal and cardiac muscle regeneration vol.10, pp.None, 2014, https://doi.org/10.1038/s41598-020-61491-4
  16. 인삼의 열처리 과정 중 생성되는 3종의 수산화진세노사이드에 대한 연구 vol.51, pp.4, 2014, https://doi.org/10.22889/kjp.2020.51.4.255
  17. Two new dammarane-type triterpenoids from the steamed roots of Panax notoginseng vol.23, pp.10, 2014, https://doi.org/10.1080/10286020.2020.1825391