DOI QR코드

DOI QR Code

60 GHz 밀리미터파 무선 링크 RRH를 활용하는 셀룰러 시스템의 전송 성능 평가

Transmission Performance Evaluation of Cellular Systems Using 60 GHz Millimeter-Wave Wireless Link RRHs

  • Lee, Youngju (Department of Electronic Engineering, Sogang University) ;
  • Sung, Wonjin (Department of Electronic Engineering, Sogang University)
  • 투고 : 2014.02.04
  • 심사 : 2014.05.23
  • 발행 : 2014.07.31

초록

최근 모바일 무선 통신의 발전으로 인해 셀 커버리지 확장을 위한 원격송신국(Remote Radio Head: RRH)이 널리 사용되고 있다. 기존의 디지털 유닛(Digital Unit: DU)과 RRH의 연결은 광케이블을 통한 유선 링크로써, 광범위한 적용에는 비용적인 제한이 있다. 본 논문에서는 밀리미터파 대역을 활용하여 유선 링크를 무선 전송으로 대체하고, 원격으로 위치된 RRH를 활용하는 셀룰러 망 시스템의 구성을 고려하였다. 밀리미터파 무선 링크 전송에 영향을 주는 요소를 분석한 후, 현재 상용화되어 있는 LTE(Long Term Evolution) 네트워크를 이용하여 기존의 유선 링크 방식과의 비교를 통해 밀리미터파 무선 링크 RRH를 활용한 방식이 전체 셀룰러 시스템의 성능을 크게 저하시키지 않음을 보임으로써 유선 링크를 대체할 수 있는 방식임을 입증한다.

Due to the recent development of mobile wireless telecommunication, RRHs(Remote Radio Heads) are widely being utilized to expand the cell coverage. Wire-link, an existing connection between DU(Digital Unit) and RRH through fiber cables, is considered to have limitations in relation to cost for a wide range of applications. This paper focuses on replacing the wire-link by wireless transmission using millimeter-wave, and implementing cellular network system through RRH from a remote location. After an influence element analysis on millimeter-wave wireless link transmissions, a comparative analysis between wireless link and an existing fiber link method will be made by utilizing currently commercialized LTE(Long Term Evolution), to prove the compatibility of millimeter-wave wireless link RRH method in replacing fiber link method without a significant decline in data transmission performance.

키워드

참고문헌

  1. Cisco VNI, Global Mobile Data Traffic Forecast, 2012-2017, Feb. 2013. [Online]. Available: www.cisco.com
  2. A. Damnjanovie, J. Montojo, Y. Wei, T. Ji, T. Luo, M. Vajapeyam, T. Yoo, O. Song, and D. Malladi, "A survey on 3GPP heterogeneous network", IEEE Wireless Commun., vol. 18, no. 3, pp. 10-21, Jun. 2011.
  3. CPRI, "Common public radio interface(CPRI):Interface specification", v. 5.0, 2011.
  4. J. Wells, "Faster than fiber: The future of multi-Gb/s wireless", IEEE Microwave Mag., vol. 10, no. 3, pp. 104-112, May 2009.
  5. D. Lockie, D. Peck, "High-data-rate millimeter-wave radios", IEEE Microwave Mag., vol. 10, no. 5, pp. 75-83, Aug. 2009.
  6. J. Wells, "Faster than fiber: The future of multi-G/s wireless", IEEE Microw. Mag., vol. 10, no. 3, pp. 104-112, 2009.
  7. K. Ohata et al., "1.25 Gb/s wireless gigabit ethernet link at 60 GHz band", IEEE Int. Microwave Symp. Dig., pp. 373-376, Jun. 2003.
  8. M. Tanomura, Y. Hamada, S. Kishimoto, M. Ito, N. Orihashi, K. Maruhashi, and H. Shimawaki, "TX and RX front-ends for 60 GHz band in 90 nm standard bulk CMOS", IEEE ISSCC Dig. Tech. Papers, pp. 558-559, 2008.
  9. Rec. ITU-R P.676-9, "Attenuation by atmospheric gases", ITU-R Recommendations, 2012.
  10. Rec. ITU-R P.838-3, "Specific attenuation model for rain for use in prediction methods", ITU-R Recommendations, 2005.
  11. Rec. ITU-R P.837-1, "Characteristics of precipitation for propagation modeling", ITU-R Recommendations, 1994.
  12. C. A. Balanis, Antenna Theory Analysis and Design. Wiley, pp. 48-51, 1982.
  13. A. Hirata et al., "120- GHz-band millimeter-wave photonic wireless link for 10-Gb/s data transmission", IEEE Trans. Microw. Theory Technol., vol. 54, no. 5, May 2006.
  14. B. Gaucher et al., "Silicon monolithic broadband millimeter wave radio technology", in Proc. Int. Conf. Space Mission Challenges for Information Technology, pp. 113-121, Jun. 2003.