Abstract
There is to be virtually impossible to solve the very large digits of prime number p and q from composite number n=pq using integer factorization in typical public-key cryptosystems, RSA. When the public key e and the composite number n are known but the private key d remains unknown in an asymmetric-key RSA, message decryption is carried out by first obtaining ${\phi}(n)=(p-1)(q-1)=n+1-(p+q)$ and then using a reverse function of $d=e^{-1}(mod{\phi}(n))$. Integer factorization from n to p,q is most widely used to produce ${\phi}(n)$, which has been regarded as mathematically hard. Among various integer factorization methods, the most popularly used is the congruence of squares of $a^2{\equiv}b^2(mod\;n)$, a=(p+q)/2,b=(q-p)/2 which is more commonly used then n/p=q trial division. Despite the availability of a number of congruence of scares methods, however, many of the RSA numbers remain unfactorable. This paper thus proposes an algorithm that directly and immediately obtains ${\phi}(n)$. The proposed algorithm computes $2^k{\beta}_j{\equiv}2^i(mod\;n)$, $0{\leq}i{\leq}{\gamma}-1$, $k=1,2,{\ldots}$ or $2^k{\beta}_j=2{\beta}_j$ for $2^j{\equiv}{\beta}_j(mod\;n)$, $2^{{\gamma}-1}$ < n < $2^{\gamma}$, $j={\gamma}-1,{\gamma},{\gamma}+1$ to obtain the solution. It has been found to be capable of finding an arbitrarily located ${\phi}(n)$ in a range of $n-10{\lfloor}{\sqrt{n}}{\rfloor}$ < ${\phi}(n){\leq}n-2{\lfloor}{\sqrt{n}}{\rfloor}$ much more efficiently than conventional algorithms.
λνμ μΈ κ³΅κ°ν€ μνΈλ°©μμΈ RSAμ μ¬μ©λλ ν©μ±μ n=pqμ ν°μ리 μμ p,qλ₯Ό μμΈμλΆν΄νμ¬ κ΅¬νλ κ²μ μ¬μ€μ λΆκ°λ₯νλ€. 곡κ°ν€ eμ ν©μ±μ nμ μκ³ κ°μΈν€ dλ₯Ό λͺ¨λ₯Ό λ, ${\phi}(n)=(p-1)(q-1)=n+1-(p+q)$μ ꡬνμ¬ $d=e^{-1}(mod{\phi}(n))$μ μν¨μλ‘ κ°μΈν€ dλ₯Ό ν΄λ
ν μ μλ€. λ°λΌμ ${\phi}(n)$μ μκΈ°μν΄ nμΌλ‘λΆν° p,qλ₯Ό ꡬνλ μνμ λμ μΈ μμΈμλΆν΄λ²μ μ μ©νκ³ μλ€. μμΈμλΆν΄λ²μλ n/p=qμ λλμ
μνλ²λ³΄λ€λ $a^2{\equiv}b^2(mod\;n)$, a=(p+q)/2,b=(q-p)/2μ μ κ³±ν©λλ²μ΄ μΌλ°μ μΌλ‘ μ μ©λκ³ μλ€. κ·Έλ¬λ λ€μν μ κ³±ν©λλ²μ΄ μ‘΄μ¬ν¨μλ λΆκ΅¬νκ³ μμ§κΉμ§λ λ§μ RSA μλ€μ΄ ν΄λ
λμ§ μκ³ μλ€. λ³Έ λ
Όλ¬Έμ ${\phi}(n)$μ μ§μ ꡬνλ μκ³ λ¦¬μ¦μ μ μνμλ€. μ μλ μκ³ λ¦¬μ¦μ $2^j{\equiv}{\beta}_j(mod\;n)$, $2^{{\gamma}-1}$ < n < $2^{\gamma}$, $j={\gamma}-1,{\gamma},{\gamma}+1$μ λν΄ $2^k{\beta}_j{\equiv}2^i(mod\;n)$, $0{\leq}i{\leq}{\gamma}-1$, $k=1,2,{\ldots}$ λλ $2^k{\beta}_j=2{\beta}_j$λ‘ ${\phi}(n)$μ ꡬνμλ€. μ μλ μκ³ λ¦¬μ¦μ $n-10{\lfloor}{\sqrt{n}}{\rfloor}$ < ${\phi}(n){\leq}n-2{\lfloor}{\sqrt{n}}{\rfloor}$μ μμμ μμΉμ μ‘΄μ¬νλ ${\phi}(n)$λ μ½ 2λ°° μ°¨μ΄μ μννμλ‘ μ°Ύμ μ μμλ€.