DOI QR코드

DOI QR Code

Phosphoinositide turnover in Toll-like receptor signaling and trafficking

  • Le, Oanh Thi Tu (Neuroscience Graduate Program, Department of Biomedical Sciences, and Chronic Inflammatory Disease Research Center, Ajou University School of Medicine) ;
  • Nguyen, Tu Thi Ngoc (Neuroscience Graduate Program, Department of Biomedical Sciences, and Chronic Inflammatory Disease Research Center, Ajou University School of Medicine) ;
  • Lee, Sang Yoon (Neuroscience Graduate Program, Department of Biomedical Sciences, and Chronic Inflammatory Disease Research Center, Ajou University School of Medicine)
  • Received : 2014.04.21
  • Published : 2014.07.31

Abstract

Lipid components in biological membranes are essential for maintaining cellular function. Phosphoinositides, the phosphorylated derivatives of phosphatidylinositol (PI), regulate many critical cell processes involving membrane signaling, trafficking, and reorganization. Multiple metabolic pathways including phosphoinositide kinases and phosphatases and phospholipases tightly control spatio-temporal concentration of membrane phosphoinositides. Metabolizing enzymes responsible for PI 4,5-bisphosphate (PI(4,5)P2) production or degradation play a regulatory role in Toll-like receptor (TLR) signaling and trafficking. These enzymes include PI 4-phosphate 5-kinase, phosphatase and tensin homolog, PI 3-kinase, and phospholipase C. PI(4,5)P2 mediates the interaction with target cytosolic proteins to induce their membrane translocation, regulate vesicular trafficking, and serve as a precursor for other signaling lipids. TLR activation is important for the innate immune response and is implicated in diverse pathophysiological disorders. TLR signaling is controlled by specific interactions with distinct signaling and sorting adaptors. Importantly, TLR signaling machinery is differentially formed depending on a specific membrane compartment during signaling cascades. Although detailed mechanisms remain to be fully clarified, phosphoinositide metabolism is promising for a better understanding of such spatio-temporal regulation of TLR signaling and trafficking.

Keywords

References

  1. Martin, T. F. (1998) Phosphoinositide lipids as signaling molecules: common themes for signal transduction, cytoskeletal regulation, and membrane trafficking. Annu. Rev. Cell Dev. Biol. 14, 231-264. https://doi.org/10.1146/annurev.cellbio.14.1.231
  2. Di Paolo, G. and De Camilli, P. (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443, 651-657. https://doi.org/10.1038/nature05185
  3. Varnai, P. and Balla, T. (2006) Live cell imaging of phosphoinositide dynamics with fluorescent protein domains. Biochim. Biophys. Acta 1761, 957-967. https://doi.org/10.1016/j.bbalip.2006.03.019
  4. Liu, Y. and Bankaitis, V. A. (2010) Phosphoinositide phosphatases in cell biology and disease. Prog. Lipid Res. 49, 201-217. https://doi.org/10.1016/j.plipres.2009.12.001
  5. Sasaki, T., Takasuga, S., Sasaki, J., Kofuji, S., Eguchi, S., Yamazaki, M. and Suzuki, A. (2009) Mammalian phosphoinositide kinases and phosphatases. Prog. Lipid Res. 48, 307-343. https://doi.org/10.1016/j.plipres.2009.06.001
  6. Strahl, T. and Thorner, J. (2007) Synthesis and function of membrane phosphoinositides in budding yeast, Saccharomyces cerevisiae. Biochim. Biophys. Acta 1771, 353-404. https://doi.org/10.1016/j.bbalip.2007.01.015
  7. Blero, D., Payrastre, B., Schurmans, S. and Erneux, C. (2007) Phosphoinositide phosphatases in a network of signalling reactions. Pflugers Arch. - Eur. J. Physiol. 455, 31-44. https://doi.org/10.1007/s00424-007-0304-5
  8. Vicinanza, M., D'Angelo, G., Di Campli, A. and De Matteis, M. A. (2008) Phosphoinositides as regulators of membrane trafficking in health and disease. Cell. Mol. Life Sci. 65, 2833-2841. https://doi.org/10.1007/s00018-008-8353-2
  9. Halstead, J. R., Jalink, K. and Divecha, N. (2005) An emerging role for PtdIns(4,5)P2-mediated signalling in human disease. Trends Pharmacol. Sci. 26, 654-660. https://doi.org/10.1016/j.tips.2005.10.004
  10. McCrea, H. J. and De Camilli, P. (2009) Mutations in phosphoinositide metabolizing enzymes and human disease. Physiology 24, 8-16. https://doi.org/10.1152/physiol.00035.2008
  11. Kwiatkowska, K. (2010) One lipid, multiple functions: how various pools of PI(4,5)P2 are created in the plasma membrane. Cell. Mol. Life Sci. 67, 3927-3946. https://doi.org/10.1007/s00018-010-0432-5
  12. Takenawa, T. and Itoh, T. (2001) Phosphoinositides, key molecules for regulation of actin cytoskeletal organization and membrane traffic from the plasma membrane. Biochim. Biophys. Acta 1533, 190-206. https://doi.org/10.1016/S1388-1981(01)00165-2
  13. van den Bout, I. and Divecha, N. (2009) PIP5K-driven PtdIns(4,5)P2 synthesis: regulation and cellular functions. J. Cell Sci. 122, 3837-3850. https://doi.org/10.1242/jcs.056127
  14. Doughman, R. L., Firestone, A. J. and Anderson, R. A. (2003) Phosphatidylinositol phosphate kinases put PI4,5P(2) in its place. J. Membr. Biol. 194, 77-89. https://doi.org/10.1007/s00232-003-2027-7
  15. Ishihara, H., Shibasaki, Y., Kizuki, N., Katagiri, H., Yazaki, Y., Asano, T. and Oka, Y. (1996) Cloning of cDNAs encoding two isoforms of 68-kDa type I phosphatidylinositol-4-phosphate 5-kinase. J. Biol. Chem. 271, 23611-23614. https://doi.org/10.1074/jbc.271.39.23611
  16. Ishihara, H., Shibasaki, Y., Kizuki, N., Wada, T., Yazaki, Y., Asano, T. and Oka, Y. (1998) Type I phosphatidylinositol-4-phosphate 5-kinases. Cloning of the third isoform and deletion/substitution analysis of members of this novel lipid kinase family. J. Biol. Chem. 273, 8741-8748. https://doi.org/10.1074/jbc.273.15.8741
  17. Kanaho, Y., Kobayashi-Nakano, A. and Yokozeki, T. (2007) The phosphoinositide kinase PIP5K that produces the versatile signaling phospholipid PI4,5P(2). Biol. Pharm. Bull. 30, 1605-1609. https://doi.org/10.1248/bpb.30.1605
  18. Rebecchi, M. J. and Pentyala, S. N. (2000) Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol. Rev. 80, 1291-1335.
  19. Mao, Y. S. and Yin, H. L. (2007) Regulation of the actin cytoskeleton by phosphatidylinositol 4-phosphate 5 kinases. Pflugers Arch. - Eur. J. Physiol. 455, 5-18. https://doi.org/10.1007/s00424-007-0286-3
  20. Cremona, O., Di Paolo, G., Wenk, M. R., Luthi, A., Kim, W. T., Takei, K., Daniell, L., Nemoto, Y., Shears, S. B., Flavell, R. A., McCormick, D. A. and De Camilli, P. (1999) Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell 99, 179-188. https://doi.org/10.1016/S0092-8674(00)81649-9
  21. Wenk, M. R., Pellegrini, L., Klenchin, V. A., Di Paolo, G., Chang, S., Daniell, L., Arioka, M., Martin, T. F. and De Camilli, P. (2001) PIP kinase Igamma is the major PI(4,5) P(2) synthesizing enzyme at the synapse. Neuron 32, 79-88. https://doi.org/10.1016/S0896-6273(01)00456-1
  22. Hammond, G. R. and Schiavo, G. (2007) Polyphosphoinositol lipids: under-PPInning synaptic function in health and disease. Dev. Neurobiol. 67, 1232-1247. https://doi.org/10.1002/dneu.20509
  23. Mao, Y. S., Yamaga, M., Zhu, X., Wei, Y., Sun, H. Q., Wang, J., Yun, M., Wang, Y., Di Paolo, G., Bennett, M., Mellman, I., Abrams, C. S., De Camilli, P., Lu, C. Y. and Yin, H. L. (2009) Essential and unique roles of PIP5K-gamma and -alpha in Fcgamma receptor-mediated phagocytosis. J. Cell Biol. 184, 281-296. https://doi.org/10.1083/jcb.200806121
  24. Botelho, R. J., Teruel, M., Dierckman, R., Anderson, R., Wells, A., York, J. D., Meyer, T. and Grinstein, S. (2000) Localized biphasic changes in phosphatidylinositol-4,5-bisphosphate at sites of phagocytosis. J. Cell Biol. 151, 1353-1368. https://doi.org/10.1083/jcb.151.7.1353
  25. Krauss, M. and Haucke, V. (2007) Phosphoinositides: Regulators of membrane traffic and protein function. FEBS Lett. 581, 2105-2111. https://doi.org/10.1016/j.febslet.2007.01.089
  26. Roth, M. G. (2004) Phosphoinositides in constitutive membrane traffic. Physiol. Rev. 84, 699-730. https://doi.org/10.1152/physrev.00033.2003
  27. Balla, T. (2005) Inositol-lipid binding motifs: signal integrators through protein-lipid and protein-protein interactions. J. Cell Sci. 118, 2093-2104. https://doi.org/10.1242/jcs.02387
  28. Takenawa, T. and Itoh, T. (2006) Membrane targeting and remodeling through phosphoinositide-binding domains. IUBMB Life 58, 296-303. https://doi.org/10.1080/15216540600732039
  29. Takeuchi, O. and Akira, S. (2010) Pattern recognition receptors and inflammation. Cell 140, 805-820. https://doi.org/10.1016/j.cell.2010.01.022
  30. Kawai, T. and Akira, S. (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 11, 373-384. https://doi.org/10.1038/ni.1863
  31. Akira, S., Uematsu, S. and Takeuchi, O. (2006) Pathogen recognition and innate immunity. Cell 124, 783-801. https://doi.org/10.1016/j.cell.2006.02.015
  32. Akira, S. and Takeda, K. (2004) Toll-like receptor signalling. Nat. Rev. Immunol. 4, 499-511. https://doi.org/10.1038/nri1391
  33. Olson, J. K. and Miller, S. D. (2004) Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J. Immunol. 173, 3916-3924. https://doi.org/10.4049/jimmunol.173.6.3916
  34. Jack, C. S., Arbour, N., Manusow, J., Montgrain, V., Blain, M., McCrea, E., Shapiro, A. and Antel, J. P. (2005) TLR signaling tailors innate immune responses in human microglia and astrocytes. J. Immunol. 175, 4320-4330. https://doi.org/10.4049/jimmunol.175.7.4320
  35. Lehnardt, S. (2010) Innate immunity and neuroinflammation in the CNS: the role of microglia in Toll-like receptor-mediated neuronal injury. Glia 58, 253-263.
  36. Aloisi, F. (2001) Immune function of microglia. Glia 36, 165-179. https://doi.org/10.1002/glia.1106
  37. Teismann, P. and Schulz, J. B. (2004) Cellular pathology of Parkinson's disease: astrocytes, microglia and inflammation. Cell Tissue Res. 318, 149-161. https://doi.org/10.1007/s00441-004-0944-0
  38. Carpentier, P. A., Duncan, D. S. and Miller, S. D. (2008) Glial toll-like receptor signaling in central nervous system infection and autoimmunity. Brain Behav. Immun. 22, 140-147. https://doi.org/10.1016/j.bbi.2007.08.011
  39. Farina, C., Aloisi, F. and Meinl, E. (2007) Astrocytes are active players in cerebral innate immunity. Trends Immunol. 28, 138-145. https://doi.org/10.1016/j.it.2007.01.005
  40. Block, M. L., Zecca, L. and Hong, J. S. (2007) Microgliamediated neurotoxicity: uncovering the molecular mechanisms. Nat. Rev. Neurosci. 8, 57-69. https://doi.org/10.1038/nrn2038
  41. Jin, J. J., Kim, H. D., Maxwell, J. A., Li, L. and Fukuchi, K. (2008) Toll-like receptor 4-dependent upregulation of cytokines in a transgenic mouse model of Alzheimer's disease. J. Neuroinflammation 5, 23. https://doi.org/10.1186/1742-2094-5-23
  42. Walter, S., Letiembre, M., Liu, Y., Heine, H., Penke, B., Hao, W., Bode, B., Manietta, N., Walter, J., Schulz- Schuffer, W. and Fassbender, K. (2007) Role of the tolllike receptor 4 in neuroinflammation in Alzheimer's disease. Cell. Physiol. Biochem. 20, 947-956. https://doi.org/10.1159/000110455
  43. Block, M. L., Zecca, L. and Hong, J.-S. (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat. Rev. Neurosci. 8, 57-69. https://doi.org/10.1038/nrn2038
  44. Okun, E., Griffioen, K. J., Lathia, J. D., Tang, S. C., Mattson, M. P. and Arumugam, T. V. (2009) Toll-like receptors in neurodegeneration. Brain Res. Rev. 59, 278-292. https://doi.org/10.1016/j.brainresrev.2008.09.001
  45. O'Neill, L. A. and Bowie, A. G. (2007) The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat. Rev. Immunol. 7, 353-364. https://doi.org/10.1038/nri2079
  46. Kawai, T. and Akira, S. (2007) Signaling to NF-kappaB by Toll-like receptors. Trends Mol. Med. 13, 460-469. https://doi.org/10.1016/j.molmed.2007.09.002
  47. Yamamoto, M., Sato, S., Hemmi, H., Sanjo, H., Uematsu, S., Kaisho, T., Hoshino, K., Takeuchi, O., Kobayashi, M., Fujita, T., Takeda, K. and Akira, S. (2002) Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature 420, 324-329. https://doi.org/10.1038/nature01182
  48. Fitzgerald, K. A., Palsson-McDermott, E. M., Bowie, A. G., Jefferies, C. A., Mansell, A. S., Brady, G., Brint, E., Dunne, A., Gray, P., Harte, M. T., McMurray, D., Smith, D. E., Sims, J. E., Bird, T. A. and O'Neill, L. A. (2001) Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature 413, 78-83. https://doi.org/10.1038/35092578
  49. Horng, T., Barton, G. M., Flavell, R. A. and Medzhitov, R. (2002) The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors. Nature 420, 329-333. https://doi.org/10.1038/nature01180
  50. Li, Q. and Verma, I. M. (2002) NF-kappaB regulation in the immune system. Nat. Rev. Immunol. 2, 725-734. https://doi.org/10.1038/nri910
  51. Horng, T., Barton, G. M. and Medzhitov, R. (2001) TIRAP: an adapter molecule in the Toll signaling pathway. Nat. Immunol. 2, 835-841. https://doi.org/10.1038/ni0901-835
  52. Kagan, J. C. and Medzhitov, R. (2006) Phosphoinositidemediated adaptor recruitment controls Toll-like receptor signaling. Cell 125, 943-955. https://doi.org/10.1016/j.cell.2006.03.047
  53. Nagpal, K., Plantinga, T. S., Wong, J., Monks, B. G., Gay, N. J., Netea, M. G., Fitzgerald, K. A. and Golenbock, D. T. (2009) A TIR domain variant of MyD88 adapter-like (Mal)/TIRAP results in loss of MyD88 binding and reduced TLR2/TLR4 signaling. J. Biol. Chem. 284, 25742-25748. https://doi.org/10.1074/jbc.M109.014886
  54. Marek, L. R. and Kagan, J. C. (2012) Phosphoinositide binding by the Toll adaptor dMyD88 controls antibacterial responses in Drosophila. Immunity 36, 612-622. https://doi.org/10.1016/j.immuni.2012.01.019
  55. Funakoshi, Y., Hasegawa, H. and Kanaho, Y. (2011) Regulation of PIP5K activity by Arf6 and its physiological significance. J. Cell. Physiol. 226, 888-895. https://doi.org/10.1002/jcp.22482
  56. Wan, T., Liu, T., Zhang, H., Tang, S. and Min, W. (2010) AIP1 functions as Arf6-GAP to negatively regulate TLR4 signaling. J. Biol. Chem. 285, 3750-3757. https://doi.org/10.1074/jbc.M109.069385
  57. Lee, S. Y., Kim, B., Jeong, H. K., Min, K. J., Liu, T., Park, J. Y., Joe, E. H. and Jou, I. (2010) Enhanced phosphatidylinositol 4-phosphate 5-kinase alpha expression and PI(4,5)P2 production in LPS-stimulated microglia. Neurochem. Int. 57, 600-607. https://doi.org/10.1016/j.neuint.2010.07.008
  58. Lee, S. Y., Kim, B., Yoon, S., Kim, Y. J., Liu, T., Woo, J. H., Chwae, Y. J., Joe, E. H. and Jou, I. (2010) Phosphatidylinositol 4-phosphate 5-kinase alpha is induced in ganglioside-stimulated brain astrocytes and contributes to inflammatory responses. Exp. Mol. Med. 42, 662-673. https://doi.org/10.3858/emm.2010.42.9.066
  59. Jou, I., Lee, J. H., Park, S. Y., Yoon, H. J., Joe, E. H. and Park, E. J. (2006) Gangliosides trigger inflammatory responses via TLR4 in brain glia. Am. J. Pathol. 168, 1619-1630. https://doi.org/10.2353/ajpath.2006.050924
  60. Nguyen, T. T., Kim, Y. M., Kim, T. D., Le, O. T., Kim, J. J., Kang, H. C., Hasegawa, H., Kanaho, Y., Jou, I. and Lee, S. Y. (2013) Phosphatidylinositol 4-phosphate 5-kinase alpha facilitates Toll-like receptor 4-mediated microglial inflammation through regulation of the Toll/interleukin-1 receptor domain-containing adaptor protein (TIRAP) location. J. Biol. Chem. 288, 5645-5659. https://doi.org/10.1074/jbc.M112.410126
  61. Choi, Y. J., Jung, J., Chung, H. K., Im, E. and Rhee, S. H. (2013) PTEN regulates TLR5-induced intestinal inflammation by controlling Mal/TIRAP recruitment. FASEB J. 27, 243-254. https://doi.org/10.1096/fj.12-217596
  62. Barton, G. M. and Kagan, J. C. (2009) A cell biological view of Toll-like receptor function: regulation through compartmentalization. Nat. Rev. Immunol. 9, 535-542. https://doi.org/10.1038/nri2587
  63. Kagan, J. C., Su, T., Horng, T., Chow, A., Akira, S. and Medzhitov, R. (2008) TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta. Nat. Immunol. 9, 361-368. https://doi.org/10.1038/ni1569
  64. Yamamoto, M., Sato, S., Hemmi, H., Hoshino, K., Kaisho, T., Sanjo, H., Takeuchi, O., Sugiyama, M., Okabe, M., Takeda, K. and Akira, S. (2003) Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301, 640-643. https://doi.org/10.1126/science.1087262
  65. Yamamoto, M., Sato, S., Hemmi, H., Uematsu, S., Hoshino, K., Kaisho, T., Takeuchi, O., Takeda, K. and Akira, S. (2003) TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat. Immunol. 4, 1144-1150. https://doi.org/10.1038/ni986
  66. Fitzgerald, K. A., Rowe, D. C., Barnes, B. J., Caffrey, D. R., Visintin, A., Latz, E., Monks, B., Pitha, P. M. and Golenbock, D. T. (2003) LPS-TLR4 signaling to IRF-3/7 and NF-kappaB involves the toll adapters TRAM and TRIF. J. Exp. Med. 198, 1043-1055. https://doi.org/10.1084/jem.20031023
  67. Watts, C. (2008) Location, location, location: identifying the neighborhoods of LPS signaling. Nat. Immunol. 9, 343-345. https://doi.org/10.1038/ni0408-343
  68. Brandt, K. J., Fickentscher, C., Kruithof, E. K. and de Moerloose, P. (2013) TLR2 ligands induce NF-kappaB activation from endosomal compartments of human monocytes. PLoS One 8, e80743. https://doi.org/10.1371/journal.pone.0080743
  69. Zanoni, I., Ostuni, R., Marek, L. R., Barresi, S., Barbalat, R., Barton, G. M., Granucci, F. and Kagan, J. C. (2011) CD14 controls the LPS-induced endocytosis of Toll-like receptor 4. Cell 147, 868-880. https://doi.org/10.1016/j.cell.2011.09.051
  70. Chiang, C. Y., Veckman, V., Limmer, K. and David, M. (2012) Phospholipase Cgamma-2 and intracellular calcium are required for lipopolysaccharide-induced Toll-like receptor 4 (TLR4) endocytosis and interferon regulatory factor 3 (IRF3) activation. J. Biol. Chem. 287, 3704-3709. https://doi.org/10.1074/jbc.C111.328559

Cited by

  1. Distinct microenvironmental cues stimulate divergent TLR4-mediated signaling pathways in macrophages vol.9, pp.443, 2016, https://doi.org/10.1126/scisignal.aaf3596
  2. Emerging Risk Biomarkers in Cardiovascular Diseases and Disorders vol.2015, 2015, https://doi.org/10.1155/2015/971453
  3. An inhibitory alternative splice isoform of Toll-like receptor 3 is induced by type I interferons in human astrocyte cell lines vol.48, pp.12, 2015, https://doi.org/10.5483/BMBRep.2015.48.12.106
  4. Shotgun Lipidomics Revealed Altered Profiles of Serum Lipids in Systemic Lupus Erythematosus Closely Associated with Disease Activity vol.8, pp.4, 2018, https://doi.org/10.3390/biom8040105