DOI QR코드

DOI QR Code

Neuroprotective roles of pituitary adenylate cyclase-activating polypeptide in neurodegenerative diseases

  • Lee, Eun Hye (Department of Molecular Bioscience, College of Biomedical Science, and Institute of Bioscience & Biotechnology, Kangwon National University) ;
  • Seo, Su Ryeon (Department of Molecular Bioscience, College of Biomedical Science, and Institute of Bioscience & Biotechnology, Kangwon National University)
  • Received : 2014.04.18
  • Published : 2014.07.31

Abstract

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic bioactive peptide that was first isolated from an ovine hypothalamus in 1989. PACAP belongs to the secretin/glucagon/vasoactive intestinal polypeptide (VIP) superfamily. PACAP is widely distributed in the central and peripheral nervous systems and acts as a neurotransmitter, neuromodulator, and neurotrophic factor via three major receptors (PAC1, VPAC1, and VPAC2). Recent studies have shown a neuroprotective role of PACAP using in vitro and in vivo models. In this review, we briefly summarize the current findings on the neurotrophic and neuroprotective effects of PACAP in different brain injury models, such as cerebral ischemia, Parkinson's disease (PD), and Alzheimer's disease (AD). This review will provide information for the future development of therapeutic strategies in treatment of these neurodegenerative diseases.

Keywords

References

  1. Miyata, A., Arimura, A., Dahl, R. R., Minamino, N., Uehara, A., Jiang, L., Culler, M. D. and Coy, D. H. (1989) Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem. Biophys. Res. Commun. 164, 567-574. https://doi.org/10.1016/0006-291X(89)91757-9
  2. Lauffer, J. M., Modlin, I. M. and Tang, L. H. (1999) Biological relevance of pituitary adenylate cyclase-activating polypeptide (PACAP) in the gastrointestinal tract. Regul. Pepti. 84, 1-12. https://doi.org/10.1016/S0167-0115(99)00024-5
  3. Journot, L., Spengler, D., Pantaloni, C., Dumuis, A., Sebben, M. and Bockaert, J. (1994) The PACAP receptor: Generation by alternative splicing of functional diversity among G protein-coupled receptors in nerve cells. Semin. Cell Dev. Biol. 5, 263-272.
  4. Pantaloni, C., Brabet, P., Bilanges, B., Dumuis, A., Houssami, S., Spengler, D., Bockaert, J. and Journot, L. (1996) Alternative splicing in the N-terminal extracellular domain of the pituitary adenylate cyclase-activating polypeptide (PACAP) receptor modulates receptor selectivity and relative potencies of PACAP-27 and PACAP-38 in phospholipase C activation. J. Biol. Chem. 271, 22146-22151. https://doi.org/10.1074/jbc.271.36.22146
  5. Hosoya, M., Onda, H., Ogi, K., Masuda, Y., Miyamoto, Y., Ohtaki, T., Okazaki, H., Arimura, A. and Fujino, M. (1993) Molecular cloning and functional expression of rat cDNAs encoding the receptor for pituitary adenylate cyclase activating polypeptide (PACAP). Biochem. Biophys. Res. Commun. 194, 133-143. https://doi.org/10.1006/bbrc.1993.1795
  6. Spengler, D., Waeber, C., Pantaloni, C., Holsboer, F., Bockaert, J., Seeburg, P. H. and Journot, L. (1993) Differential signal transduction by five splice variants of the PACAP receptor. Nature 365, 170-175. https://doi.org/10.1038/365170a0
  7. Harmar, A. J. (2001) Family-B G-protein-coupled receptors. Genome Biol. 2, REVIEWS393.1-3013.10.
  8. Arimura, A., Somogyvari-Vigh, A., Weill, C., Fiore, R. C., Tatsuno, I., Bay, V. and Brenneman, D. E. (1994) PACAP functions as a neurotrophic factor. Ann. N. Y. Acad. Sci. 739, 228-243. https://doi.org/10.1111/j.1749-6632.1994.tb19825.x
  9. Hannibal, J. (2002) Pituitary adenylate cyclase-activating peptide in the rat central nervous system: an immunohistochemical and in situ hybridization study. J. Comp. Neurol. 453, 389-417. https://doi.org/10.1002/cne.10418
  10. Sundler, F., Ekblad, E., Hannibal, J., Moller, K., Zhang, Y. Z., Mulder, H., Elsas, T., Grunditz, T., Danielsen, N., Fahrenkrug, J. and Uddman, R. (1996) Pituitary adenylate cyclase-activating peptide in sensory and autonomic ganglia: localization and regulation. Ann. N. Y. Acad. Sci. 805, 410-426; discussion 427-428.
  11. Gonzalez, B. J., Basille, M., Vaudry, D., Fournier, A. and Vaudry, H. (1997) Pituitary adenylate cyclase-activating polypeptide promotes cell survival and neurite outgrowth in rat cerebellar neuroblasts. Neuroscience 78, 419-430. https://doi.org/10.1016/S0306-4522(96)00617-3
  12. Vaudry, D., Gonzalez, B. J., Basille, M., Yon, L., Fournier, A. and Vaudry, H. (2000) Pituitary adenylate cyclase-activating polypeptide and its receptors: from structure to functions. Pharmacol. Rev. 52, 269-324.
  13. Lioudyno, M., Skoglosa, Y., Takei, N. and Lindholm, D. (1998) Pituitary adenylate cyclase-activating polypeptide (PACAP) protects dorsal root ganglion neurons from death and induces calcitonin gene-related peptide (CGRP) immunoreactivity in vitro. J. Neurosci. Res. 51, 243-256. https://doi.org/10.1002/(SICI)1097-4547(19980115)51:2<243::AID-JNR13>3.0.CO;2-9
  14. Morio, H., Tatsuno, I., Hirai, A., Tamura, Y. and Saito, Y. (1996) Pituitary adenylate cyclase-activating polypeptide protects rat-cultured cortical neurons from glutamate-induced cytotoxicity. Brain Res. 741, 82-88. https://doi.org/10.1016/S0006-8993(96)00920-1
  15. Chen, Y., Samal, B., Hamelink, C. R., Xiang, C. C., Chen, M., Vaudry, D., Brownstein, M. J., Hallenbeck, J. M. and Eiden, L. E. (2006) Neuroprotection by endogenous and exogenous PACAP following stroke. Regul. Pept. 137, 4-19. https://doi.org/10.1016/j.regpep.2006.06.016
  16. Tanaka, J., Koshimura, K., Murakami, Y., Sohmiya, M., Yanaihara, N. and Kato, Y. (1997) Neuronal protection from apoptosis by pituitary adenylate cyclase-activating polypeptide. Regul. Pept. 72, 1-8. https://doi.org/10.1016/S0167-0115(97)01038-0
  17. Waschek, J. A. (2002) Multiple actions of pituitary adenylyl cyclase activating peptide in nervous system development and regeneration. Dev. Neurosci. 24, 14-23. https://doi.org/10.1159/000064942
  18. Waschek, J. A. (2013) VIP and PACAP: neuropeptide modulators of CNS inflammation, injury, and repair. Br. J. Pharmacol. 169, 512-523. https://doi.org/10.1111/bph.12181
  19. May, V., Lutz, E., MacKenzie, C., Schutz, K. C., Dozark, K. and Braas, K. M. (2010) Pituitary adenylate cyclase-activating polypeptide (PACAP)/PAC1HOP1 receptor activation coordinates multiple neurotrophic signaling pathways: Akt activation through phosphatidylinositol 3-kinase gamma and vesicle endocytosis for neuronal survival. J. Biol. Chem. 285, 9749-9761. https://doi.org/10.1074/jbc.M109.043117
  20. Dejda, A., Sokolowska, P. and Nowak, J. Z. (2005) Neuroprotective potential of three neuropeptides PACAP, VIP and PHI. Pharmacol. Rep. 57, 307-320.
  21. Shoge, K., Mishima, H. K., Saitoh, T., Ishihara, K., Tamura, Y., Shiomi, H. and Sasa, M. (1999) Attenuation by PACAP of glutamate-induced neurotoxicity in cultured retinal neurons. Brain Res. 839, 66-73. https://doi.org/10.1016/S0006-8993(99)01690-X
  22. Pugh, P. C. and Margiotta, J. F. (2006) PACAP support of neuronal survival requires MAPK- and activity-generated signals. Mol. Cell. Neurosci. 31, 586-595. https://doi.org/10.1016/j.mcn.2005.11.012
  23. Villalba, M., Bockaert, J. and Journot, L. (1997) Pituitary adenylate cyclase-activating polypeptide (PACAP-38) protects cerebellar granule neurons from apoptosis by activating the mitogen-activated protein kinase (MAP kinase) pathway. J. Neurosci. 17, 83-90.
  24. Vaudry, D., Gonzalez, B. J., Basille, M., Pamantung, T. F., Fontaine, M., Fournier, A. and Vaudry, H. (2000) The neuroprotective effect of pituitary adenylate cyclase-activating polypeptide on cerebellar granule cells is mediated through inhibition of the CED3-related cysteine protease caspase-3/CPP32. Proc. Natl. Acad. Sci. U. S. A. 97, 13390-13395. https://doi.org/10.1073/pnas.97.24.13390
  25. Frechilla, D., Garcia-Osta, A., Palacios, S., Cenarruzabeitia, E. and Del Rio, J. (2001) BDNF mediates the neuroprotective effect of PACAP-38 on rat cortical neurons. Neuroreport 12, 919-923. https://doi.org/10.1097/00001756-200104170-00011
  26. Falluel-Morel, A., Aubert, N., Vaudry, D., Basille, M., Fontaine, M., Fournier, A., Vaudry, H. and Gonzalez, B. J. (2004) Opposite regulation of the mitochondrial apoptotic pathway by C2-ceramide and PACAP through a MAP-kinase-dependent mechanism in cerebellar granule cells. J. Neurochem. 91, 1231-1243. https://doi.org/10.1111/j.1471-4159.2004.02810.x
  27. Bhave, S. V. and Hoffman, P. L. (2004) Phosphatidylinositol 3'-OH kinase and protein kinase A pathways mediate the anti-apoptotic effect of pituitary adenylyl cyclase-activating polypeptide in cultured cerebellar granule neurons: modulation by ethanol. J. Neurochem. 88, 359-369.
  28. Delgado, M. and Ganea, D. (2003) Vasoactive intestinal peptide prevents activated microglia-induced neurodegeneration under inflammatory conditions: potential therapeutic role in brain trauma. FASEB J. 17, 1922-1924.
  29. Gottschall, P. E., Tatsuno, I. and Arimura, A. (1994) Regulation of interleukin-6 (IL-6) secretion in primary cultured rat astrocytes: synergism of interleukin-1 (IL-1) and pituitary adenylate cyclase activating polypeptide (PACAP). Brain Res. 637, 197-203. https://doi.org/10.1016/0006-8993(94)91233-5
  30. Ohtaki, H., Nakamachi, T., Dohi, K., Aizawa, Y., Takaki, A., Hodoyama, K., Yofu, S., Hashimoto, H., Shintani, N., Baba, A., Kopf, M., Iwwakura, Y., Matsuda, K., Arimura, A. and Shioda, S. (2006) Pituitary adenylate cyclase-activating polypeptide (PACAP) decreases ischemic neuronal cell death in association with IL-6. Proc. Natl. Acad. Sci. U. S. A. 103, 7488-7493. https://doi.org/10.1073/pnas.0600375103
  31. Dejda, A., Seaborn, T., Bourgault, S., Touzani, O., Fournier, A., Vaudry, H. and Vaudry, D. (2011) PACAP and a novel stable analog protect rat brain from ischemia: Insight into the mechanisms of action. Peptides. 32, 1207-1216. https://doi.org/10.1016/j.peptides.2011.04.003
  32. Banks, W. A., Uchida, D., Arimura, A., Somogyvari-Vigh, A. and Shioda, S. (1996) Transport of pituitary adenylate cyclase-activating polypeptide across the blood-brain barrier and the prevention of ischemia-induced death of hippocampal neurons. Ann. N. Y. Acad. Sci. 805, 270-277; discussion 277-279.
  33. Uchida, D., Arimura, A., Somogyvari-Vigh A, Shioda, S. and Banks, W. A. (1996) Prevention of ischemia-induced death of hippocampal neurons by pituitary adenylate cyclase activating polypeptide. Brain Res. 736, 280-286. https://doi.org/10.1016/0006-8993(96)00716-0
  34. Reglodi, D., Somogyvari-Vigh, A., Vigh, S., Kozicz, T. and Arimura, A. (2000) Delayed systemic administration of PACAP38 is neuroprotective in transient middle cerebral artery occlusion in the rat. Stroke 31, 1411-1417. https://doi.org/10.1161/01.STR.31.6.1411
  35. Stetler, R. A., Gao, Y., Zukin, R. S., Vosler, P. S., Zhang, L., Zhang, F., Cao, G., Bennett, M. V. and Chen, J. (2010) Apurinic/apyrimidinic endonuclease APE1 is required for PACAP-induced neuroprotection against global cerebral ischemia. Proc. Natl. Acad. Sci. U. S. A. 107, 3204-3209. https://doi.org/10.1073/pnas.1000030107
  36. Shintani, N., Suetake, S., Hashimoto, H., Koga, K., Kasai, A., Kawaguchi, C., Morita, Y., Hirose, M., Sakai, Y., Tomimoto, S., Matsuda, T. and Bada, A. (2005) Neuroprotective action of endogenous PACAP in cultured rat cortical neurons. Regul. Pept. 126, 123-128. https://doi.org/10.1016/j.regpep.2004.08.014
  37. Vaudry, D., Pamantung, T. F., Basille, M., Rousselle, C., Fournier, A., Vaudry, H., Beauvillain, J. C. and Gonzalez, B. J. (2002) PACAP protects cerebellar granule neurons against oxidative stress-induced apoptosis. Eur. J. Neurosci. 15, 1451-1460. https://doi.org/10.1046/j.1460-9568.2002.01981.x
  38. Horvath, G., Reglodi, D., Opper, B., Brubel, R., Tamas, A., Kiss, P., Toth, G., Csernus, V., Matkovits, A. and Racz, B. (2010) Effects of PACAP on the oxidative stress-induced cell death in chicken pinealocytes is influenced by the phase of the circadian clock. Neurosci. Lett. 484, 148-152. https://doi.org/10.1016/j.neulet.2010.08.039
  39. Armstrong, B. D., Abad, C., Chhith, S., Cheung-Lau, G., Hajji, O. E., Nobuta, H. and Waschek, J. A. (2008) Impaired nerve regeneration and enhanced neuroinflammatory response in mice lacking pituitary adenylyl cyclase activating peptide. Neuroscience 151, 63-73. https://doi.org/10.1016/j.neuroscience.2007.09.084
  40. Suk, K., Park, J. H. and Lee, W. H. (2004) Neuropeptide PACAP inhibits hypoxic activation of brain microglia: a protective mechanism against microglial neurotoxicity in ischemia. Brain Res. 1026, 151-156. https://doi.org/10.1016/j.brainres.2004.08.017
  41. Bruns, J., Jr. and Hauser, W. A. (2003) The epidemiology of traumatic brain injury: a review. Epilepsia 44(Suppl 10), 2-10.
  42. Werner, C. and Engelhard, K. (2007) Pathophysiology of traumatic brain injury. Br. J. Anaesth 99, 4-9. https://doi.org/10.1093/bja/aem131
  43. Raghupathi, R. (2004) Cell death mechanisms following traumatic brain injury. Brain Pathol. 14, 215-222. https://doi.org/10.1111/j.1750-3639.2004.tb00056.x
  44. Skoglosa, Y., Lewen, A., Takei, N., Hillered, L. and Lindholm, D. (1999) Regulation of pituitary adenylate cyclase activating polypeptide and its receptor type 1 after traumatic brain injury: comparison with brain-derived neurotrophic factor and the induction of neuronal cell death. Neuroscience 90, 235-247. https://doi.org/10.1016/S0306-4522(98)00414-X
  45. Tamas, A., Reglodi, D., Farkas, O., Kovesdi, E., Pal, J., Povlishock, J.T., Schwarcz, A., Czeiter, E., Szanto, Z., Doczi, T., Buki, A. and Bukovics, P. (2012) Effect of PACAP in central and peripheral nerve injuries. Int. J. Mol. Sci. 13, 8430-8448. https://doi.org/10.3390/ijms13078430
  46. Kovesdi, E., Tamas, A., Reglodi, D., Farkas, O., Pal, J., Toth, G., Bukovics, P., Doczi, T. and Buki, A. (2008) Posttraumatic administration of pituitary adenylate cyclase activating polypeptide in central fluid percussion injury in rats. Neurotox. Res. 13, 71-78. https://doi.org/10.1007/BF03033558
  47. Johanson, C., Stopa, E., Baird, A. and Sharma, H. (2011) Traumatic brain injury and recovery mechanisms: peptide modulation of periventricular neurogenic regions by the choroid plexus-CSF nexus. J. Neural. Transm. 118, 115-133. https://doi.org/10.1007/s00702-010-0498-0
  48. Mao, S. S., Hua, R., Zhao, X. P., Qin, X., Sun, Z. Q., Zhang, Y., Wu, Y. Q., Jia, M. X., Cao, J. L. and Zhang, Y. M. (2012) Exogenous administration of PACAP alleviates traumatic brain injury in rats through a mechanism involving the TLR4/MyD88/NF-$\kappa{B}$pathway. J. Neurotrauma 29, 1941-1959. https://doi.org/10.1089/neu.2011.2244
  49. Ziebell, J. M. and Morganti-Kossmann, M. C. (2010) Involvement of Pro- and anti-inflammatory cytokines and chemokines in the pathophysiology of traumatic brain injury. Neurotherapeutics. 7, 22-30. https://doi.org/10.1016/j.nurt.2009.10.016
  50. Marklund, N., Bakshi, A., Castelbuono, D. J., Conte, V. and McIntosh, T. K. (2006) Evaluation of pharmacological treatment strategies in traumatic brain injury. Curr. Pharm. Des. 12, 1645-1680. https://doi.org/10.2174/138161206776843340
  51. Fang, K. M., Chen, J. K., Hung, S. C., Chen, M. C., Wu, Y. T., Wu, T. J., Lin, H. I., Chen, C. H., Cheng, H., Yang, C. S. and Tzeng, S. F. (2010) Effects of combinatorial treatment with pituitary adenylate cyclase activating peptide and human mesenchymal stem cells on spinal cord tissue repair. PLoS One 5, e15299. https://doi.org/10.1371/journal.pone.0015299
  52. Kim, D. H., Ko, I. G., Kim, B. K., Kim, T. W., Kim, S. E., Shin, M. S., Kim, C. J., Kim, H., Kim, K. M. and Baek, S. S. (2010) Treadmill exercise inhibits traumatic brain injury-induced hippocampal apoptosis. Physiol. Behav. 101, 660-665. https://doi.org/10.1016/j.physbeh.2010.09.021
  53. Reglodi, D., Kiss, P., Lubics, A. and Tamas, A. (2011) Review on the protective effects of PACAP in models of neurodegenerative diseases In Vitro and In Vivo. Curr. Pharm. Des. 17, 962-972. https://doi.org/10.2174/138161211795589355
  54. Leker, R. R. and Shohami, E. (2002) Cerebral ischemia and trauma-different etiologies yet similar mechanisms: neuroprotective opportunities. Brain Res. Brain Res. Rev. 39, 55-73. https://doi.org/10.1016/S0165-0173(02)00157-1
  55. Buki, A., Okonkwo, D. O., Wang, K. K. and Povlishock, J. T. (2000) Cytochrome c release and caspase activation in traumatic axonal injury. J. Neurosci. 20, 2825-2834.
  56. Jankovic, J. (2008) Parkinson's disease: Clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 79, 368-376. https://doi.org/10.1136/jnnp.2007.131045
  57. Gerlach, M. and Riederer, P. (1996) Animal models of Parkinson's disease: an empirical comparison with the phenomenology of the disease in man. J. Neural. Transm. 103, 987-1041. https://doi.org/10.1007/BF01291788
  58. Kostrzewa, R. M. and Segura-Aguilar, J. (2002) Neurotoxicological and neuroprotective elements in Parkinson's disease. Neurotox. Res. 4, 83-86. https://doi.org/10.1080/10298420290015890
  59. Masuo, Y., Matsumoto, Y., Tokito, F., Tsuda, M. and Fujino, M. (1993) Effects of vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase activating polypeptide (PACAP) on the spontaneous release of acetylcholine from the rat hippocampus by brain microdialysis. Brain Res. 611, 207-215. https://doi.org/10.1016/0006-8993(93)90504-G
  60. Deumens, R., Blokland, A. and Prickaerts, J. (2002) Modeling Parkinson's disease in rats: an evaluation of 6-OHDA lesions of the nigrostriatal pathway. Exp. Neurol. 175, 303-317. https://doi.org/10.1006/exnr.2002.7891
  61. Reglodi, D., Lubics, A., Tamas, A., Szalontay, L. and Lengvari, I. (2004) Pituitary adenylate cyclase activating polypeptide protects dopaminergic neurons and improves behavioral deficits in a rat model of Parkinson's disease. Behav. Brain Res. 151, 303-312. https://doi.org/10.1016/j.bbr.2003.09.007
  62. Reglodi, D., Tamas, A., Lubics, A., Szalontay, L. and Lengvari, I. (2004) Morphological and functional effects of PACAP in 6-hydroxydopamine-induced lesion of the substantia nigra in rats. Regul. Pept. 123, 85-94. https://doi.org/10.1016/j.regpep.2004.05.016
  63. Wang, G., Qi, C., Fan, G. H., Zhou, H. Y. and Chen, S. D. (2005) PACAP protects neuronal differentiated PC12 cells against the neurotoxicity induced by a mitochondrial complex I inhibitor, rotenone. FEBS Lett. 579, 4005-4011. https://doi.org/10.1016/j.febslet.2005.06.013
  64. Takei, N., Skoglosa, Y. and Lindholm, D. (1998) Neurotrophic and neuroprotective effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on mesencephalic dopaminergic neurons. J. Neurosci. Res. 54, 698-706. https://doi.org/10.1002/(SICI)1097-4547(19981201)54:5<698::AID-JNR15>3.0.CO;2-5
  65. Chung, C. Y., Seo, H., Sonntag, K. C., Brooks, A., Lin, L. and Isacson, O. (2005) Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection. Hum. Mol. Genet. 14, 1709-1725. https://doi.org/10.1093/hmg/ddi178
  66. Brown, D., Tamas, A., Reglodi, D. and Tizabi, Y. (2013) PACAP protects against salsolinol-induced toxicity in dopaminergic SH-SY5Y cells: implication for Parkinson's disease. J. Mol. Neurosci. 50, 600-607. https://doi.org/10.1007/s12031-013-0015-7
  67. von Bohlen und Halbach, O., Schober, A. and Krieglstein, K. (2004) Genes, proteins, and neurotoxins involved in Parkinson's disease. Prog. Neurobiol. 73, 151-177. https://doi.org/10.1016/j.pneurobio.2004.05.002
  68. Yang, S., Yang, J., Yang, Z., Chen, P., Fraser, A., Zhang, W., Pang, H., Gao, X., Wilson, B., Hong, J. S. and Block, M. L. (2006) Pituitary adenylate cyclase-activating polypeptide (PACAP) 38 and PACAP4-6 are neuroprotective through inhibition of NADPH oxidase: potent regulators of microglia-mediated oxidative stress. J. Pharmacol. Exp. Ther. 319, 595-603. https://doi.org/10.1124/jpet.106.102236
  69. Przywara, D. A., Guo, X., Angelilli, M. L., Wakade, T. D. and Wakade, A. R. (1996) A non-cholinergic transmitter, pituitary adenylate cyclase-activating polypeptide, utilizes a novel mechanism to evoke catecholamine secretion in rat adrenal chromaffin cells. J. Biol. Chem. 271, 10545-10550. https://doi.org/10.1074/jbc.271.18.10545
  70. Ghzili, H., Grumolato, L., Thouennon, E., Tanguy, Y., Turquier, V., Vaudry, H. and Anouar, Y. (2008) Role of PACAP in the physiology and pathology of the sympathoadrenal system. Front Neuroendocrinol. 29, 128-141. https://doi.org/10.1016/j.yfrne.2007.10.001
  71. Mustafa, T., Walsh, J., Grimaldi, M. and Eiden, L. E. (2010) PAC1hop receptor activation facilitates catecholamine secretion selectively through 2-APB-sensitive Ca(2+) channels in PC12 cells. Cell Signal. 22, 1420-1426. https://doi.org/10.1016/j.cellsig.2010.05.005
  72. Wang, G., Pan, J., Tan, Y. Y., Sun, X. K., Zhang, Y. F., Zhou, H. Y., Ren, R. J., Wang, X. J. and Chen, S. D. (2008) Neuroprotective effects of PACAP27 in mice model of Parkinson's disease involved in the modulation of K(ATP) subunits and D2 receptors in the striatum. Neuropeptides 42, 267-276. https://doi.org/10.1016/j.npep.2008.03.002
  73. Deguil, J., Jailloux, D., Page, G., Fauconneau, B., Houeto, J. L., Philippe, M., Muller, J. M. and Pain, S. (2007) Neuroprotective effects of pituitary adenylate cyclase-activating polypeptide (PACAP) in MPP+-induced alteration of translational control in Neuro-2a neuroblastoma cells. J. Neurosci. Res. 85, 2017-2025. https://doi.org/10.1002/jnr.21318
  74. Deguil, J., Chavant, F., Lafay-Chebassier, C., Perault-Pochat, M. C., Fauconneau, B. and Pain, S. (2010) Neuroprotective effect of PACAP on translational control alteration and cognitive decline in MPTP parkinsonian mice. Neurotox. Res. 17, 142-155. https://doi.org/10.1007/s12640-009-9091-4
  75. Hardy, J. and Selkoe, D. J. (2002) The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297, 353-356. https://doi.org/10.1126/science.1072994
  76. LaFerla, F. M., Green, K. N. and Oddo, S. (2007) Intracellular amyloid-beta in Alzheimer's disease. Nat. Rev. Neurosci. 8, 499-509. https://doi.org/10.1038/nrn2168
  77. Kojro, E., Postina, R., Buro, C., Meiringer, C., Gehrig-Burger, K. and Fahrenholz, F. (2006) The neuropeptide PACAP promotes the $\alpha$-secretase pathway for processing the Alzheimer amyloid precursor protein. FASEB J. 20, 512-514. https://doi.org/10.1096/fj.05-4812fje
  78. Rat, D., Schmitt, U., Tippmann, F., Dewachter, I., Theunis, C., Wieczerzak, E., Postina, R., Van Leuven, F., Fahrenholz, F. and Kojro, E. (2011) Neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) slows down Alzheimer's disease-like pathology in amyloid precursor protein-transgenic mice. FASEB J. 25, 3208-3218. https://doi.org/10.1096/fj.10-180133
  79. Wu, Z. L., Ciallella, J. R., Flood, D. G., O'Kane, T. M., Bozyczko-Coyne, D. and Savage, M. J. (2006) Comparative analysis of cortical gene expression in mouse models of Alzheimer's disease. Neurobiol. Aging 27, 377-386. https://doi.org/10.1016/j.neurobiolaging.2005.02.010
  80. Dogrukol-Ak, D., Kumar, V. B., Ryerse, J. S., Farr, S. A., Verma, S., Nonaka, N., Nakamachi, T., Ohtaki, H., Niehoff, M. L., Edwards, J. C., Shioda, S., Morley, J. E. and Banks, W. A. (2009) Isolation of peptide transport system-6 from brain endothelial cells: therapeutic effects with antisense inhibition in Alzheimer and stroke models. J. Cereb. Blood Flow Metab. 29, 411-422. https://doi.org/10.1038/jcbfm.2008.131
  81. Strittmatter, W. J. and Roses, A. D. (1995) Apolipoprotein E and Alzheimer disease. Proc. Natl. Acad. Sci. U. S. A. 92, 4725-4727. https://doi.org/10.1073/pnas.92.11.4725
  82. Plump, A. S., Smith, J. D., Hayek, T., Aalto-Setala, K., Walsh, A., Verstuyft, J. G., Rubin, E. M. and Breslow, J. L. (1992) Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 71, 343-353. https://doi.org/10.1016/0092-8674(92)90362-G
  83. Gozes, I., Bachar, M., Bardea, A., Davidson, A., Rubinraut, S., Fridkin, M. and Giladi, E. (1997) Protection against developmental retardation in apolipoprotein E-deficient mice by a fatty neuropeptide: implications for early treatment of Alzheimer's disease. J. Neurobiol. 33, 329-342. https://doi.org/10.1002/(SICI)1097-4695(199709)33:3<329::AID-NEU10>3.0.CO;2-A
  84. Onoue, S., Endo, K., Ohshima, K., Yajima, T. and Kashimoto, K. (2002) The neuropeptide PACAP attenuates beta-amyloid (1-42)-induced toxicity in PC12 cells. Peptides 23, 1471-1478. https://doi.org/10.1016/S0196-9781(02)00085-2
  85. Zhu, L., Tamvakopoulos, C., Xie, D., Dragovic, J., Shen, X., Fenyk-Melody, J. E., Schmidt, K., Bagchi, A., Griffin, P. R., Thornberry, N. A. and Sinha Roy, R. (2003) The role of dipeptidyl peptidase IV in the cleavage of glucagon family peptides: in vivo metabolism of pituitary adenylate cyclase activating polypeptide-(1-38). J. Biol. Chem. 278, 22418-22423. https://doi.org/10.1074/jbc.M212355200
  86. Bourgault, S., Vaudry, D., Botia, B., Couvineau, A., Laburthe, M., Vaudry, H. and Fournier, A. (2008) Novel stable PACAP analogs with potent activity towards the PAC1 receptor. Peptides 29, 919-932. https://doi.org/10.1016/j.peptides.2008.01.022
  87. Bourgault, S., Vaudry, D., Dejda, A., Doan, N. D., Vaudry, H. and Fournier, A. (2009) Pituitary adenylate cyclase-activating polypeptide: focus on structure-activity relationships of a neuroprotective Peptide. Curr. Med. Chem. 16, 4462-4480. https://doi.org/10.2174/092986709789712899

Cited by

  1. The role of GPCRs in neurodegenerative diseases: avenues for therapeutic intervention vol.32, 2017, https://doi.org/10.1016/j.coph.2017.02.001
  2. Adenylyl cyclase activating polypeptide reduces phosphorylation and toxicity of the polyglutamine-expanded androgen receptor in spinobulbar muscular atrophy vol.8, pp.370, 2016, https://doi.org/10.1126/scitranslmed.aaf9526
  3. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Is Involved in Adult Mouse Hippocampal Neurogenesis After Stroke vol.59, pp.2, 2016, https://doi.org/10.1007/s12031-016-0731-x
  4. Novel tactics for neuroprotection in Parkinson's disease: Role of antibiotics, polyphenols and neuropeptides vol.155, 2017, https://doi.org/10.1016/j.pneurobio.2015.10.004
  5. Role of transglutaminase 2 in PAC1 receptor mediated protection against hypoxia-induced cell death and neurite outgrowth in differentiating N2a neuroblastoma cells vol.128, 2017, https://doi.org/10.1016/j.bcp.2017.01.001
  6. The effects of Chinese medicines on cAMP/PKA signaling in central nervous system dysfunction vol.132, 2017, https://doi.org/10.1016/j.brainresbull.2017.04.006
  7. The change of plasma pituitary adenylate cyclase-activating polypeptide levels after aneurysmal subarachnoid hemorrhage vol.134, pp.2, 2016, https://doi.org/10.1111/ane.12522
  8. Plasma pituitary adenylate cyclase-activating polypeptide concentrations and mortality after acute spontaneous basal ganglia hemorrhage vol.439, 2015, https://doi.org/10.1016/j.cca.2014.10.010
  9. PACAP modulates the consolidation and extinction of the contextual fear conditioning through NMDA receptors vol.118, 2015, https://doi.org/10.1016/j.nlm.2014.11.014
  10. Potential PET Ligands for Imaging of Cerebral VPAC and PAC Receptors: Are Non-Peptide Small Molecules Superior to Peptide Compounds? vol.05, pp.05, 2015, https://doi.org/10.4236/wjns.2015.55036
  11. Copy number variability in Parkinson’s disease: assembling the puzzle through a systems biology approach vol.136, pp.1, 2017, https://doi.org/10.1007/s00439-016-1749-4
  12. Current disease modifying approaches to treat Parkinson’s disease vol.73, pp.7, 2016, https://doi.org/10.1007/s00018-015-2101-1
  13. PACAP/PAC1 Regulation of Inflammation via the Sympathetic Nervous System in a Model of Multiple Sclerosis pp.1559-1166, 2018, https://doi.org/10.1007/s12031-018-1137-8
  14. Alteration of the PAC1 Receptor Expression in the Basal Ganglia of MPTP-Induced Parkinsonian Macaque Monkeys vol.33, pp.4, 2018, https://doi.org/10.1007/s12640-017-9841-7
  15. Neuropeptides Exert Neuroprotective Effects in Alzheimer's Disease vol.11, pp.1662-5099, 2018, https://doi.org/10.3389/fnmol.2018.00493
  16. Novel Approaches for the Treatment of Alzheimer’s and Parkinson’s Disease vol.20, pp.3, 2019, https://doi.org/10.3390/ijms20030719