DOI QR코드

DOI QR Code

Immunostimulating activity of maysin isolated from corn silk in murine RAW 264.7 macrophages

  • Lee, Jisun (Department of Biotechnology, The Catholic University of Korea) ;
  • Kim, Sun-Lim (National Institute of Crop Science, Rural Development Administration) ;
  • Lee, Seul (Department of Biotechnology, The Catholic University of Korea) ;
  • Chung, Mi Ja (Department of Food Science and Nutrition, College of Health, Welfare and Education, Gwangju University) ;
  • Park, Yong Il (Department of Biotechnology, The Catholic University of Korea)
  • Received : 2013.08.22
  • Accepted : 2013.10.29
  • Published : 2014.07.31

Abstract

Corn silk (CS) has long been consumed as a traditional herb in Korea. Maysin is a major flavonoid of CS. The effects of maysin on macrophage activation were evaluated, using the murine macrophage RAW 264.7 cells. Maysin was isolated from CS by methanol extraction, and preparative $C_{18}$ reverse phase column chromatography. Maysin was nontoxic up to $100{\mu}g/ml$, and dose-dependently increased TNF-${\alpha}$ secretion and iNOS production by 11.2- and 4.2-fold, respectively, compared to untreated control. The activation and subsequent nuclear translocation of NF-${\kappa}B$ was substantially enhanced upon treatment with maysin ($1-100{\mu}g/ml$). Maysin also stimulated the phosphorylation of Akt and MAPKs (ERK, JNK). These results indicated that maysin activates macrophages to secrete TNF-${\alpha}$ and induce iNOS expression, via the activation of the Akt, NF-${\kappa}B$ and MAPKs signaling pathways. These results suggest for the first time that maysin can be a new immunomodulator, enhancing the early innate immunity.

Keywords

References

  1. Hu, Q. L., Zhang, L. J., Li, Y. N., Ding, Y. J. and Li, F. L. (2010) Purification and anti-fatigue activity of flavonoids from corn silk. Int. J. Phys Sci. 5, 321-326.
  2. Bastien, J. W. (1983) Pharmacopeia of qollahuaya andeans. J. Ethnopharmacol. 8, 97-111. https://doi.org/10.1016/0378-8741(83)90091-0
  3. Caceres, A., Giron, L. M. and Martinez, A. M. (1987) Diuretic activity of plants used for the treatment of urinary ailments in Guatemala. J. Ethnopharmacol. 19, 233-245. https://doi.org/10.1016/0378-8741(87)90001-8
  4. Lee, E. A., Byrne, P. F., McMullen, M. D., Snook, M. E., Wiseman, B. R., Widstrom, N. W. and Coe, E. H. (1998) Genetic mechanisms underlying apimaysin and maysin synthesis and corn earworm antibiosis in maize (Zea mays L.). Genetics 149, 1997-2006.
  5. Guo, B. Z., Zhang, Z. J., Butron, A., Widstrom, N. W., Snook, M. E., Lynch, R. E. and Plaisted, D. (2004) Lost P1 allele in sh2 sweet corn: quantitative effects of p1 and a1 genes on concentrations of maysin, apimaysin, methoxymaysin, and chlorogenic acid in maize silk. J. Econ. Entomol. 97, 2117-2126. https://doi.org/10.1603/0022-0493-97.6.2117
  6. Waiss, A. C., Chan, B. G., Elliger, C. A., Wiseman, B. R., McMillian, W. W., Widstrom, N. W., Zuber, M. S. and Keaster, A. J. (1979) Maysin, a flavone glycoside from corn silks with antibiotic activity toward corn earworm. J. Econ. Entomol. 72, 256-258. https://doi.org/10.1093/jee/72.2.256
  7. Medzhitov, R. and Janeway, C. (2000) Innate immune recognition: mechanisms and pathways. Immunol. Rev. 173, 89-97. https://doi.org/10.1034/j.1600-065X.2000.917309.x
  8. Commins, S. P., Borish, L. and Steinke, J. W. (2010) Immunologic messenger molecules: Cytokines, interferons, and chemokines. J. Allergy Clin. Immunol. 125, S53-72. https://doi.org/10.1016/j.jaci.2009.07.008
  9. Vassalli, P. (1992) The pathophysiology of tumor necrosis factors. Annu. Rev. Immunol. 10, 411. https://doi.org/10.1146/annurev.iy.10.040192.002211
  10. Flynn, J. L., Goldstein, M. M., Chen, J., Triebold, K. J., Pfeffer, K., Lowenstein, C. J., Schreiber, R., Mak, T. W. and Bloom, B. R. (1995) Tumor necrosis factor-$\alpha$ is required in the protective immune response against Mycobacterium tuberculosis. Immunity. 2, 561-572. https://doi.org/10.1016/1074-7613(95)90001-2
  11. Huang, M., Mei, X. and Zhang, S. (2011) Mechanism of nitric oxide production in macrophages treated with medicinal mushroom extracts (review). Int. J. Med. Mushrooms 13, 1-6. https://doi.org/10.1615/IntJMedMushr.v13.i1.10
  12. Yu, Q., Nie, S. P., Li, W. J., Zheng, W. Y., Yin, P. F., Gong, D. M. and Xie, M. Y. (2013) Macrophage immunomodulatory activity of a purified polysaccharide isolated from Ganoderma atrum. Phytother. Res. 27, 186-191. https://doi.org/10.1002/ptr.4698
  13. Feng, Y. H., Zhou, W. L., Wu, Q. L., Li, X. Y., Zhao, W. M. and Zou, J. P. (2002) Low dose of resveratrol enhanced immune response of mice. Acta Pharmacol. Sin. 23, 893-897
  14. Na, Y. S., Kim, W. J., Kim, S. M., Park, J. K., Lee, S. M., Kim, S. O., Synytsya, A. and Park, Y. I. (2010) Purification, characterization and immunostimulating activity of water- soluble polysaccharide isolated from Capsosiphon fulvescens. Int. Immunopharmacol. 10, 364-370. https://doi.org/10.1016/j.intimp.2009.12.011
  15. Yu, Q., Nie, S. P., Wang, J. Q., Yin, P. F., Li, W. J. and Xie, M. Y. (2012) Polysaccharide from Ganoderma atrum induces tumor necrosis factor-alpha secretion via phosphoinositide 3-kinase/Akt, mitogen-activated protein kinase and nuclear factor-kappaB signaling pathways in RAW264.7 cells. Int. Immunopharmacol. 14, 362-368. https://doi.org/10.1016/j.intimp.2012.09.005
  16. Lee, E., Jeong, K. W., Shin, A., Jin, B., Jnawali, H. N., Jun, B. H., Lee, J. Y., Heo, Y. S. and Kim, Y. (2013) Binding model for eriodictyol to Jun-N terminal kinase and its anti- inflammatory signaling pathway. BMB Rep. 46, 594-599 https://doi.org/10.5483/BMBRep.2013.46.12.092
  17. Kim, M., Li, Y. X., Dewapriya, P., Ryu, B. and Kim, S. K. (2013) Floridoside suppresses pro-inflammatory responses by blocking MAPK signaling in activated microglia. BMB Rep. 46, 398-403. https://doi.org/10.5483/BMBRep.2013.46.8.237
  18. Bogdan, C. (2001) Nitric oxide and the immune response. Nat. Immunol. 2, 907-916. https://doi.org/10.1038/ni1001-907
  19. Lee, J. S. and Hong, E. K. (2011) Immunostimulating activity of the polysaccharides isolated from Cordyceps militaris. Int. Immunopharmacol. 11, 1226-1233. https://doi.org/10.1016/j.intimp.2011.04.001
  20. Schepetkin, I. A., Xie, G., Kirpotina, L. N., Klein, R. A., Jutila, M. A. and Quinn, M. T. (2008) Macrophage immunomodulatory activity of polysaccharides isolated from Opuntia polyacantha. Int. Immunopharmacol. 8, 1455-1466. https://doi.org/10.1016/j.intimp.2008.06.003
  21. Hirsch, E., Katanaev, V. L., Garlanda, C., Azzolino, O., Pirola, L., Silengo, L., Sozzani, S., Mantovani, A., Altruda, F. and Wymann, M. P. (2000) Central role for G protein- coupled phosphoinositide 3-kinase gamma in inflammation. Science 287, 1049-1053. https://doi.org/10.1126/science.287.5455.1049
  22. Han, J. M., Jin, Y. Y., Kim, H. Y., Park, K. H., Lee, W. S. and Jeong, T. S. (2010) Lavandulyl flavonoids from Sophora flavescens suppress lipopolysaccharide-induced activation of nuclear factor-kappaB and mitogen-activated protein kinases in RAW264.7 cells. Biol. Pharm. Bull. 33, 1019-1023. https://doi.org/10.1248/bpb.33.1019
  23. Pearson, G., Robinson, F., Beers Gibson, T., Xu, B. E., Karandikar, M., Berman, K. and Cobb, M. H. (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr. Rev. 22, 153-183.
  24. Ock, J., Kim, S. and Suk, K. (2009) Anti-inflammatory effects of a fluorovinyloxyacetamide compound KT-15087 in microglia cells. Pharmacol. Res. 59, 414-422. https://doi.org/10.1016/j.phrs.2009.02.008
  25. Lee, J., Choi, K. J., Lim, M. J., Hong, F., Choi, T. G., Tak, E., Lee, S., Kim, Y. J., Chang, S. G., Cho, J. M., Ha, J. and Kim, S. S. (2010) Proto-oncogenic H-Ras, K-Ras, and N-Ras are involved in muscle differentiation via phosphatidylinositol 3-kinase. Cell Res. 20, 919-934. https://doi.org/10.1038/cr.2010.92
  26. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 7, 248-254.

Cited by

  1. Anti-obesity potential of corn silks: Relationships of phytochemicals and antioxidation, anti-pre-adipocyte proliferation, anti-adipogenesis, and lipolysis induction vol.23, 2016, https://doi.org/10.1016/j.jff.2016.03.010
  2. Immunostimulatory Activity of Apios Tuber Extract on RAW264.7 Macrophage Cells vol.46, pp.4, 2016, https://doi.org/10.4167/jbv.2016.46.4.248
  3. Isolation and Identification of Flavonoids from Corn Silk vol.59, pp.4, 2014, https://doi.org/10.7740/kjcs.2014.59.4.435
  4. High maysin corn silk extract reduces body weight and fat deposition in C57BL/6J mice fed high-fat diets vol.10, pp.6, 2016, https://doi.org/10.4162/nrp.2016.10.6.575
  5. Glucuronides of phytoestrogen flavonoid enhance macrophage function via conversion to aglycones by β-glucuronidase in macrophages vol.5, pp.3, 2017, https://doi.org/10.1002/iid3.163
  6. The immunostimulating activity of quercetin 3-O-xyloside in murine macrophages via activation of the ASK1/MAPK/NF-κB signaling pathway vol.31, 2016, https://doi.org/10.1016/j.intimp.2015.12.008
  7. Ginseng marc-derived low-molecular weight oligosaccharide inhibits the growth of skin melanoma cells via activation of RAW264.7 cells vol.29, pp.2, 2015, https://doi.org/10.1016/j.intimp.2015.10.031
  8. Antioxidant and Anti-Adipogenic Activities of Bread Containing Corn Silk, Job's Tears, Lentinus edodes, and Apple Peel in 3T3-L1 Preadipocytes vol.45, pp.5, 2016, https://doi.org/10.3746/jkfn.2016.45.5.651
  9. Corn silk maysin induces apoptotic cell death in PC-3 prostate cancer cells via mitochondria-dependent pathway vol.119, pp.1-2, 2014, https://doi.org/10.1016/j.lfs.2014.10.012
  10. Ginsenoside Rc from Panax ginseng exerts anti-inflammatory activity by targeting TANK-binding kinase 1/interferon regulatory factor-3 and p38/ATF-2 vol.41, pp.2, 2017, https://doi.org/10.1016/j.jgr.2016.02.001
  11. Corn silk maysin ameliorates obesity in vitro and in vivo via suppression of lipogenesis, differentiation, and function of adipocytes vol.93, 2017, https://doi.org/10.1016/j.biopha.2017.06.039
  12. Corn Silk Extract and Its Bioactive Peptide Ameliorated Lipopolysaccharide-Induced Inflammation in Mice via the Nuclear Factor-κB Signaling Pathway vol.65, pp.4, 2017, https://doi.org/10.1021/acs.jafc.6b03327
  13. Immunostimulating activity of polyhydric alcohol isolated from Taxus cuspidata vol.85, 2016, https://doi.org/10.1016/j.ijbiomac.2016.01.027
  14. Pharmacokinetic Study of Bioactive Flavonoids in the Traditional Japanese Medicine Keigairengyoto Exerting Antibacterial Effects against Staphylococcus aureus vol.19, pp.2, 2018, https://doi.org/10.3390/ijms19020328