DOI QR코드

DOI QR Code

Electrochemical Properties of La4Ni3O10-GDC Composite Cathode by Facile Sol-gel Method for IT-SOFCs

  • Choi, Sihyuk (Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Kim, Guntae (Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST))
  • Received : 2014.06.13
  • Accepted : 2014.07.18
  • Published : 2014.07.31

Abstract

Among the Ruddlesden-Popper series, $La_4Ni_3O_{10}$ has received widespread attention as a promising cathode material by reason of its favorable properties for realizing high performance of intermediate temperature solid oxide fuel cells (IT-SOFCs). The $La_4Ni_3O_{10}$ cathode is prepared using the facile sol-gel method by employing tri-blockcopolymer (F127) to obtain a single phase in a short sintering time. There are no reactions between the $La_4Ni_3O_{10}$ cathode and the $Ce_{0.9}Gd_{0.1}O_{2-\delta}$ (GDC) electrolyte upon sintering at $1000^{\circ}C$, indicating that the $La_4Ni_3O_{10}$ cathode has good chemical compatibility with the GDC electrolyte. The maximum electrical conductivity of $La_4Ni_3O_{10}$ reaches approximately 240 S $cm^{-1}$ at $100^{\circ}C$ and gradually decreases with increasing temperaturein air atmosphere. The area specific resistance value of $La_4Ni_3O_{10}$ composite with 40 wt% GDC is $0.435{\Omega}cm^2$ at $700^{\circ}C$. These data allow us to propose that the $La_4Ni_3O_{10}$-GDC composite cathode is a good candidate for IT-SOFC applications.

Keywords

References

  1. B. C. H. Steele and A. Heinzel, "Materials for Fuel-cell Technologies," Nature, 414 345-52 (2001). https://doi.org/10.1038/35104620
  2. S. Park, J. M. Vohs, and R. J. Gorte, "Direct Oxidation of Hydrocarbons in a Solid Oxide Fuel Cell," Nature, 404 265-67 (2000). https://doi.org/10.1038/35005040
  3. M. Liu, M. E. Lynch, K. Blinn, F. M. Alamgir, and Y. Choi, "Rational SOFC Material Design: New Advances and Tools," Mater. Today, 14 [11] 534-46 (2011). https://doi.org/10.1016/S1369-7021(11)70279-6
  4. Z. Shao, S. M. Haile, J. Ahn, P. D. Ronney, Z. Zhan, and S. A. Barnett, "A Thermally Self-sustained Micro Solid-oxide Fuel-cell Stack with High Power Density," Nature, 435 795-98 (2005). https://doi.org/10.1038/nature03673
  5. Z. Shao and S. M. Haile, "A High-performance Cathode for the Next Generation of Solid Oxide Fuel Cells," Nature, 431 170-73 (2004). https://doi.org/10.1038/nature02863
  6. S. Choi, S. Yoo, J. Kim, S. Park, A. Jun, S. Sengodan, J. Kim, J. Shin, H. Y. Jeong, Y. Choi, G. Kim, and M. Liu, "Highly Efficient and Robust Cathode Materials for Lowtemperature Solid Oxide Fuel Cells: $PrBa_{0.5}Sr_{0.5}Co_{2-x}Fe_xO_{5+{\delta}}$," Sci. Rep., 3 2426 (2013). https://doi.org/10.1038/srep02426
  7. S. Choi, J. Shin, K. M. Ok, and G. Kim, "Chemical Compatibility, Redox Behavior, and Electrochemical Performance of Nd_{1-x}Sr_{x}CoO3-${\delta}$ Cathodes Based on $Ce_{1.9}Gd_{0.1}O_{1.95}$ for Intermediate-temperature Solid Oxide Fuel Cells," Electrochim. Acta., 81 217-23 (2012). https://doi.org/10.1016/j.electacta.2012.07.090
  8. S. Park, S. Choi, J. Shin, and G. Kim, "Electrochemical Investigation of Strontium Doping Effect on High Performance $Pr1-xSr_xCoO_{3-{\delta}}$(x = 0.1, 0.3. 0.5, and 0.7) Cathode for Intermediate-temperature Solid Oxide Fuel Cells," J. Power Sources, 210 172-77 (2012). https://doi.org/10.1016/j.jpowsour.2012.03.018
  9. J. H. Kim, M. Cassidy, J. T. S. Irvine, and J. Bae, "Electrochemical Investigation of Sm$Ba_{0.5}Sr_{0.5}Co_2O_{5+d}$ Composite Cathodes with Cathodes for Intermediate Temperatureoperating Solid Oxide Fuel Cells," Chem. Mater., 22 883-92 (2010). https://doi.org/10.1021/cm901720w
  10. G. Kim, S. Wang, A. J. Jacobson, L. Reimus, P. Brodersen, and C. A. Mims, "Rapid Oxygen Ion Diffusion and Surface Exchange Kinetics in $PrBaCo_2O_{5+x}$ with a Perovskiterelated Structure and Ordered a Cations," J. Mater. Chem.,17 2500-05 (2007). https://doi.org/10.1039/b618345j
  11. S. Park, S. Choi, J. Shin, and G. Kim, "A Collaborative Study of Sintering and Composite Effects for a $PrBa_{0.5}Sr_{0.5}Co_{2-x}Fe_xO_{5+{\delta}$ IT-SOFC Cathode," RSC Adv., 4 1775-81 (2014). https://doi.org/10.1039/c3ra45296d
  12. A. Jun, J. Shin, and G. Kim, "High Redox and Performance Stability of Layered $SmBa_{0.5}Sr_{0.5}Co_{1.5}Cu_{0.5}O_{5+{\delta}}$ Perovskite Cathodes for Intermediate-temperature Solid Oxide Fuel Cells," Phys. Chem. Chem. Phys.,15 [45] 19906-12 (2013). https://doi.org/10.1039/c3cp53883d
  13. S. Park, S. Choi, J. Shin, and G. Kim, "Tradeoff Optimization of Electrochemical Performance and Thermal Expansion for Co-based Cathode Material for Intermediatetemperature Solid Oxide Fuel Cells," Electrochim. Acta, 125 683-90 (2014). https://doi.org/10.1016/j.electacta.2014.01.112
  14. V. V. Kharton, A. P. Viskup, E. N. Naumovich, and F. M. B. Marques, "Oxygen Ion Transport in $La_2NiO_4$-based Ceramics," J. Mater.Chem., 9 [10] 2623-29 (1999). https://doi.org/10.1039/a903276b
  15. V. V. Kharton, A. V. Kovalevsky, M. Avdeev, E. V. Tsipis, M. V. Patrakeev, A. A. Yaremchenko, E. N. Naumovich, and J. R. Frade, "Chemically Induced Expansion of $La_{2-}NiO_{4+{\delta}}$-based Materials," Chem. Mater.,19 2027-33 (2007). https://doi.org/10.1021/cm070096x
  16. J. A. Kilner and C. K. M. Shaw, "Mass Transport in $La_2Ni_{1-x}Co_xO_{4+{\delta}}$ Oxides with the $K_2NiF_4$ Structure," Solid State Ionics, 154 523-27 (2002).
  17. G. Amow, I. J. Davidson, and S. J. Skinner, "A Comparative Study of the Ruddlesden-Popper Series, $La_{n+1}Ni_nO_{3n+1}$ (n = 1, 2, and 3), for Solid-oxide Fuel-cell Cathode Applications," Solid State Ionics, 177 [13-14] 1205-10 (2006). https://doi.org/10.1016/j.ssi.2006.05.005
  18. Z. Zhang and M. Greenblatt, "Synthesis, Structure, and Properties of $Ln_4Ni_3O_{10-{\delta}}$ (Ln = La, Pr, and Nd)," J. Solid State Chem., 117 [2] 236-46 (1995). https://doi.org/10.1006/jssc.1995.1269
  19. V. V. Kharton, A. A. Yaremchenko, and E. N. Naumovich, "Research on the Electrochemistry of Oxygen Ion Conductors in the Former Soviet Union. II. Perovskite-related Oxides," J. Solid State Electrochem., 3 [6] 303-26 (1999). https://doi.org/10.1007/s100080050161
  20. S. Choi, S. Yoo, J. Y. Shin, and G. Kim, "High Performance SOFC Cathode Prepared by Infiltrationof $La_{n+1}Ni_nO_{3n+1}$(n = 1, 2, and 3) in Porous YSZ," J. Electrochem. Soc.,158 [8] B995-99 (2011). https://doi.org/10.1149/1.3598170
  21. P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, and G. D. Stucky, "Generalized Syntheses of Large-pore Mesoporous Metal Oxides with Semicrystalline Frameworks," Nature, 396 152-55 (1998). https://doi.org/10.1038/24132
  22. C. Rossignol, J. M. Ralph, J. M. Bae, and J. T. Vaughey, "$Ln_{1-x}Sr_xCoO_3$ (Ln=Gd, Pr) as a Cathode for Intermediatetemperature Solid Oxide Fuel Cells," Solid State Ionics, 175 [1-4] 59-61 (2004). https://doi.org/10.1016/j.ssi.2004.09.021
  23. E. Boehm, J. M. Bassat, M. C Steil, P. Dordoe, F. Mauvy, and J. C. Grenier, "Oxygen Transport Properties of $La_2Ni_{1-x}Cu_xO_{4+{\delta}}$ Mixed Conducting Oxides," Solid State Sci., 5 [7] 973-81 (2003). https://doi.org/10.1016/S1293-2558(03)00091-8
  24. E. P. Murray and S. A. Barnett, "$(La,Sr)MnO_3-(Ce,Gd)O_{2-x}$ Composite Cathodes for Solid Oxide Fuel Cells," Solid State Ionics,143 [3-4] 265-73 (2001). https://doi.org/10.1016/S0167-2738(01)00871-2
  25. S. B. Adler, X. Y. Chen, and J. R. Wilson, "Mechanisms and Rate Laws for Oxygen Exchange on Mixed-conducting Oxide Surfaces," J. Catal.,245 [1] 91-109 (2007). https://doi.org/10.1016/j.jcat.2006.09.019

Cited by

  1. as an efficient solid oxide fuel cell cathode: electrochemical properties versus microstructure vol.3, pp.47, 2015, https://doi.org/10.1039/C5TA07862H