DOI QR코드

DOI QR Code

BaCeO3-BaZrO3 Solid Solution (BCZY) as a High Performance Electrolyte of Protonic Ceramic Fuel Cells (PCFCs)

BaCeO3-BaZrO3 고용체(BCZY) 기반 프로톤 세라믹 연료전지(PCFC)용 고성능 전해질 개발

  • An, Hyegsoon (High-Temperature Energy Materials Center, Korea Institute of Science and Technology) ;
  • Shin, Dongwook (High-Temperature Energy Materials Center, Korea Institute of Science and Technology) ;
  • Choi, Sung Min (High-Temperature Energy Materials Center, Korea Institute of Science and Technology) ;
  • Lee, Jong-Ho (High-Temperature Energy Materials Center, Korea Institute of Science and Technology) ;
  • Son, Ji-Won (High-Temperature Energy Materials Center, Korea Institute of Science and Technology) ;
  • Kim, Byung-Kook (High-Temperature Energy Materials Center, Korea Institute of Science and Technology) ;
  • Je, Hae June (High-Temperature Energy Materials Center, Korea Institute of Science and Technology) ;
  • Lee, Hae-Weon (High-Temperature Energy Materials Center, Korea Institute of Science and Technology) ;
  • Yoon, Kyung Joong (High-Temperature Energy Materials Center, Korea Institute of Science and Technology)
  • 안혁순 (한국과학기술연구원 고온에너지 재료연구센터) ;
  • 신동욱 (한국과학기술연구원 고온에너지 재료연구센터) ;
  • 최성민 (한국과학기술연구원 고온에너지 재료연구센터) ;
  • 이종호 (한국과학기술연구원 고온에너지 재료연구센터) ;
  • 손지원 (한국과학기술연구원 고온에너지 재료연구센터) ;
  • 김병국 (한국과학기술연구원 고온에너지 재료연구센터) ;
  • 제해준 (한국과학기술연구원 고온에너지 재료연구센터) ;
  • 이해원 (한국과학기술연구원 고온에너지 재료연구센터) ;
  • 윤경중 (한국과학기술연구원 고온에너지 재료연구센터)
  • Received : 2014.06.13
  • Accepted : 2014.07.15
  • Published : 2014.07.31

Abstract

To overcome the limitations of the solid oxide fuel cells (SOFCs) due to the high temperature operation, there has been increasing interest in proton conducting fuel cells (PCFCs) for reduction of the operating temperature to the intermediate temperature range. In present work, the perovskite $BaCe_{0.85-x}Zr_xY_{0.15}O_{3-\delta}$ (BCZY, x = 0.1, 0.3, 0.5, and 0.7) were synthesized via solid state reaction (SSR) and adopted as an electrolyte materials for PCFCs. Powder characteristics were examined using X-ray diffraction (XRD), thermogravimetric analysis (TGA) and Brunauer, Emmett and Teller (BET) surface area analysis. Single phase BCZY were obtained in all compositions, and chemical stability was improved with increasing Zr content. Anode-supported cell with $Ni-BaCe_{0.55}Z_{0.3}Y_{0.15}O_{3-\delta}$ (BCZY3) anode, BCZY3 electrolyte and BCZY3-$Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-\delta}$ (BSCF) composite cathode was fabricated and electrochemically characterized. Open-circuit voltage (OCV) was 1.05 V, and peak power density of 370 ($mW/cm^2$) was achieved at $650^{\circ}C$.

Keywords

References

  1. A. B. Stambouli and E. Traversa, "Solid Oxide Fuel Cells (SOFCs) a Review of an Environmentally Clean and Efficient Source of Energy," Renewable Sustainable Energy Rev., 6 [5] 433-55 (2002). https://doi.org/10.1016/S1364-0321(02)00014-X
  2. S. M. Haile, "Fuel Cell Materials and Components," Acta Mater., 51 [19] 5981-6000 (2003). https://doi.org/10.1016/j.actamat.2003.08.004
  3. H. Iwahara, Y. Asakura, K. katahira, and M. Tanaka, "Prospect of Hydrogen Technology Using Proton-conducting Ceramics," Solid State Ionics, 168 [3-4] 299-310 (2004). https://doi.org/10.1016/j.ssi.2003.03.001
  4. K. D. Kreuer, "Aspects of the Formation and Mobility of Protonic Charge Carriers and the Stability of Perovskitetype Oxides," Solid State Ionics, 125 [1-4] 285-302 (1999). https://doi.org/10.1016/S0167-2738(99)00188-5
  5. H. Iwahara, T. Yajima, T. Hibino, K. Ozaki, and H. Suzuki, "Protonic Conduction in Calcium, Strontium and Barium Zirconates," Solid State Ionics, 61 [1-3] 65-69 (1993). https://doi.org/10.1016/0167-2738(93)90335-Z
  6. H. Iwahara, T. Esaka, H. Uchida, and N. Maeda, "Proton Conducting in Sintered Oxides and Its Application to Steam Electrolysis for Hydrogen Production," Solid State Ionics, 3-4 359-63 (1981). https://doi.org/10.1016/0167-2738(81)90113-2
  7. H. Iwahara, H. Uchida, K. Ono, and K. Ogaki, "Proton Conduction in Sintered Oxides Based on $BaCeO_3$," J. Electrochem. Soc., 135 [2] 529-33 (1988). https://doi.org/10.1149/1.2095649
  8. K. D. Kreuer, "Fast Proton Transport in Solids," J. Mol. Struct., 177 265-76 (1988). https://doi.org/10.1016/0022-2860(88)80093-0
  9. N. Bonanos, "Oxide-based Protonic Conductors: Point Defects and Transport Properties," Solid State Ionics, 145 [1-4] 265-74 (2001). https://doi.org/10.1016/S0167-2738(01)00951-1
  10. F. Giannici, A. Longo, K. D. Kreuer, A. Balerna, and A. Martorana, "Dopants and Defects: Local Structure and Dynamics in Barium Cerates and Zirconates," Solid State Ionics, 181 [3-4] 122-25 (2010). https://doi.org/10.1016/j.ssi.2009.01.021
  11. A. Braun, A. Ovalle, V. Pomjakushin, A. Cervellino, and S. Erat, "Yttrium and Hydrogen Superstructure and Correlation of Lattice Expansion and Proton Conductivity in the $BaZr_{0.9}Y_{0.1}O_{2.95}$ Proton Conductor," Appl. Phys. Lett., 95 224103 (2009). https://doi.org/10.1063/1.3268454
  12. N. Zakowsky, S. Williamson, and J. T. S. Irvine, "Elaboration of $CO_2$ Tolerance Limits of $BaCe_{0.9}Y_{0.1}O_{3-{\delta}}$ Electrolytes for Fuel Cells and Other Application," Solid State Ionics, 176 3019-26 (2005). https://doi.org/10.1016/j.ssi.2005.09.040
  13. C. W. Tanner and A. V. Virkar, "Instability of $BaCeO_3$ in $H_2O$-containing Atmospheres," J. Electrochem. Soc., 143 [4] 1386-89 (1996). https://doi.org/10.1149/1.1836647
  14. S. V. Bhide and A. V. Virkar, "Stability of $BaCeO_3$-based Proton Conductors in Water-containing Atmospheres," J. Electrochem. Soc., 146 [6] 2038-44 (1999). https://doi.org/10.1149/1.1391888
  15. P. Babilo, T. Uda, and S. M. Haile, "Processing of Yttriumdoped Barium Zirconate for High Proton Conductivity," J. Mater. Res., 22 [5] 1322-30 (2007). https://doi.org/10.1557/jmr.2007.0163
  16. K. H. Ryu and S. M. Haile, "Chemical Stability and Proton Conductivity of Doped $BaCeO_3$-$BaZrO_3$ Solid Solutions," Solid State Ionics, 125 355-67 (1999). https://doi.org/10.1016/S0167-2738(99)00196-4
  17. S. Wienstroer and H.-D. Wiemhofer, "Investigation of the Influence of Zirconium Substitution on the Properties of Neodymium-doped Barium Cerates," Solid State Ionics, 101-103 1113-17 (1997). https://doi.org/10.1016/S0167-2738(97)00163-X
  18. Z. Zhong, "Stability and Conductivity Study of the $BaCe_{0.9-x}Zr_xY_{0.1}O_{2.95}$ Systems," Solid State Ionics, 178 [3-4] 213-20 (2007). https://doi.org/10.1016/j.ssi.2006.12.007
  19. A. K. Azad and J. T. S. Irvine, "Synthesis, Chemical Stability and Proton Conductivity of the Perovksites $Ba(Ce, Zr)_{1-x}Sc_xO_{3-{\delta}}$," Solid State Ionics, 178 ,635-40 (2007). https://doi.org/10.1016/j.ssi.2007.02.004
  20. E. Fabbri, A. D'Epifanio, E. D. Bartolomeo, S. Licoccia, and E. Traversa, "Tailoring the Chemical Stability of Ba $(Ce_{0.8-x}Zr_x)Y_{0.2}O_{3-{\delta}}$ Protonic Conductors for Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs)," Solid State Ionics, 179 558-64(2008). https://doi.org/10.1016/j.ssi.2008.04.002
  21. Y. Guo, Y. Lin, R. Ran, and Z. shao, "Zirconium Doping Effect on the Performance of Proton-conducting BaZry $Ce_{0.8-y}Y_{0.2}O_{3-{\delta}}$ $(0.0{\leq}y{\leq}0.8)$ for Fuel Cell Applications," J. Power Sources, 193 [2] 400-07 (2009). https://doi.org/10.1016/j.jpowsour.2009.03.044
  22. S. Ricote, N. Bonanos, and G. Caboche, "Water Vapour Solubility and Conductivity Study of the Proton Conductor $BaCe_{(0.9-x)}Zr_xY_{0.1}O_{(3-{\delta})}$," Solid State Ionics, 180 [14-16] 990-97 (2009) https://doi.org/10.1016/j.ssi.2009.03.016
  23. S. Ricote, N. Bonanos, M. C. M. de Lucas, and G. Caboche, "Structural and Conductivity Study of the Proton Conductor $BaCe_{(0.9-x)}Zr_xY_{0.1}O_{(3-{\delta})}$ at Intermediate Temperatures," J. Power Sources, 193 [1] 189-93 (2009). https://doi.org/10.1016/j.jpowsour.2008.11.080
  24. K. Katahira, Y. Kohchi, T. Shimura, and H. Iwahara, "Protonic Conduction in Zr-substituted $BaCeO_3$," Solid State Ionics, 138 [1-2] 91-98 (2000). https://doi.org/10.1016/S0167-2738(00)00777-3
  25. N. Narendar, G. C. Mather, P. A. N. Dias, and D. P. Fagg, "The Importance of Phase Purity in Ni-$BaZr_{0.85}Y_{0.15}O_{3-{\delta}}$ Cermet Anodes-novelnitrate-free Combustion Routeand Electrochemical Study," RSC Adv., 3 ,859-69 (2013). https://doi.org/10.1039/c2ra22301e
  26. Y. Guo, R. Ran, Z. Shao, and S. Liu, "Effect of Ba Nonstoichiometry Nonstoichiometry on the Phase Structure, Sintering, Electrical Conductivity and Phase Stability of $Ba_{1{\pm}x}Ce_{0.4}Zr_{0.4}Y_{0.2}O_{3-{\delta}}$ $(0{\leq}x{\leq}0.20)$ Proton Conductors," Int. J. Hydrogen Energy, 36 [14] 8450-60 (2011). https://doi.org/10.1016/j.ijhydene.2011.04.037
  27. A. Magrez and T. Schober, "Preparation, Sintering, and Water Incorporation of Proton Conducting $Ba_{0.99}Zr_{0.8}Y_{0.2}$ $O_{3-{\delta}}$: Comparison between Three Different Synthesis Techniques," Solid State Ionics, 175 [1-4] 585-88 (2004). https://doi.org/10.1016/j.ssi.2004.03.045
  28. D. Han, K. Kishida, K. Shinoda, H. Inui, and T. Uda, "A Comprehensive Understanding of Structure and Site Occupancy of Y in Y-doped $BaZrO_3$," J. Mater. Chem. A, 1 3027-33 (2013). https://doi.org/10.1039/c2ta00675h
  29. C. Zuo, S. Zha, M. Liu, M. Hatano, and M. Uchiyama, "$Ba(Zr_{0.1}Ce_{0.7}Y_{0.2})O_{3-{\delta}}$ as an Electrolyte for Low-temperature Solid-oxide Fuel Cells," Adv. Mater., 18 [24] 3318-20 (2006). https://doi.org/10.1002/adma.200601366
  30. S. V. Bhide and A. V. Virkar, "Stability of $AB^{\prime}1/2B^{\prime}^{\prime}_{1/2}O_{3-}$ Type Mixed Perovskite Proton Conductors," J. Electrochem. Soc., 146 [12] 4386-92 (1999). https://doi.org/10.1149/1.1392648
  31. R. D. Shannon, "Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides," Acta. Cryst., 32 751-67 (1976). https://doi.org/10.1107/S0567739476001551
  32. C.-S. Tu, R. R. Chien, V. H. Schmidt, S.-C. Lee, C.-C. Huang, and C.-L. Tsai, "Thermal Stability of $Ba(Zr_{0.8-x}Ce_xY_{0.2})O_{2.9}$ Ceramicsin Carbon Dioxide," J. Appl. Phys., 105 [10] 103504 (2009). https://doi.org/10.1063/1.3117835
  33. L. Bi, E. Fabbri, Z. Sun, and E. Traversa, "Sinteractive Anodic Powders Improve Densification and Electrochemical Properties of $BaZr_{0.8}Y_{0.2}O_3$-${\delta}$ Electrolyte Films for Anodesupported Solid Oxide Fuel Cells," Energy Environ. Sci., 4 1352-57 (2011). https://doi.org/10.1039/c0ee00387e
  34. Y. Yoo and N. Lim, "Performance and Stability of Proton Conducting Solid Oxide Fuel Cells Based on Yttrium-doped Barium Cerate-zirconate Thin-film Electrolyte," J. Power Sources, 229 48-57 (2013). https://doi.org/10.1016/j.jpowsour.2012.11.094
  35. Z. Shao and S. M. Haile, "A High-performance Cathode for the Next Generation of Solid-oxide Fuel Cells," Nature, 431 [9] 170-73 (2004). https://doi.org/10.1038/nature02863
  36. K. Efimov, Q. Xu, and A. Feldhoff, "Transmission Electron Microscopy Study of $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ Perovskite Decomposition at Intermediate Temperatures," Chem. Mater., 22 [21] 5866-75 (2010). https://doi.org/10.1021/cm101745v
  37. Y. Lin, R. Ran, Y. Zheng, Z. Shao, W. Jin, N. Xu, and J. Ahn, "Evaluation of $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ as a Potential Cathode for an Anode-supported Proton-conducting Solid-oxide Fuel Cell," J. Power Sources, 180 15-22 (2008). https://doi.org/10.1016/j.jpowsour.2008.02.044

Cited by

  1. High-Performance Protonic Ceramic Fuel Cells with Thin-Film Yttrium-Doped Barium Cerate–Zirconate Electrolytes on Compositionally Gradient Anodes vol.8, pp.14, 2016, https://doi.org/10.1021/acsami.6b00512
  2. with Yb and In Doping vol.162, pp.7, 2015, https://doi.org/10.1149/2.0011508jes
  3. Effect of Nickel Addition on Sintering Behavior and Electrical Conductivity of BaCe0.35Zr0.5Y0.15O3-δ vol.56, pp.1, 2019, https://doi.org/10.4191/kcers.2019.56.1.03
  4. Pr2NiO4+δ for Cathode in Protonic Ceramic Fuel Cells vol.55, pp.4, 2014, https://doi.org/10.4191/kcers.2018.55.4.06