DOI QR코드

DOI QR Code

Electrochemical Properties of Segmented-in-series SOFC Using Ni-Fe/YSZ Core-shell Anode

Ni-Fe/YSZ 코어-쉘 구조 연료극을 사용한 다전지식 고체산화물 연료전지의 전기화학적 특성

  • An, Yong-Tae (Electronic Materials Convergence Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Ji, Mi-Jung (Electronic Materials Convergence Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Hwang, Hae-Jin (Department of Ceramic Engineering, Inha University) ;
  • Lee, Min-Jin (Electronic Materials Convergence Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Hong, Sun-Ki (Electronic Materials Convergence Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Kang, Young-Jin (Electronic Materials Convergence Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Choi, Byung-Hyun (Electronic Materials Convergence Division, Korea Institute of Ceramic Engineering & Technology)
  • 안용태 (한국세라믹기술원 전자소재융합본부) ;
  • 지미정 (한국세라믹기술원 전자소재융합본부) ;
  • 황해진 (인하대학교 세라믹공학과) ;
  • 이민진 (한국세라믹기술원 전자소재융합본부) ;
  • 홍선기 (한국세라믹기술원 전자소재융합본부) ;
  • 강영진 (한국세라믹기술원 전자소재융합본부) ;
  • 최병현 (한국세라믹기술원 전자소재융합본부)
  • Received : 2014.04.29
  • Accepted : 2014.06.26
  • Published : 2014.07.31

Abstract

An Ni-Fe/YSZ core-shell structured anode for uniform microstructure and catalytic activity was synthesized. Flat tubular segmented-in-series solid oxide fuel cell-stacks were prepared by decalcomania method using synthesized anode powder. The Ni-Fe/YSZ core-shell anode exhibited better electrical conductivity than a commercially available Ni-YSZ cermet anode. Also power output increased by 1.3 times with a higher open circuit voltage. These results can be attributed to the uniformly distributed Ni particles in the YSZ framework. The impedance spectra of a Ni-Fe/YSZ core-shell anode showed comparable reduced ohmic resistance similar to those of the commercially available Ni-YSZ cermet anodes.

Keywords

References

  1. A. Atkinson, S. Barnett, R. J. Gorte, J. T. S. Irvine, A. J. McEvoy, M. Mogensen, S. C. Singhal, and J. Vohs, "Advanced Anodes for High-temperature Fuel Cells," Nat. Mater., 3 17-27 (2004). https://doi.org/10.1038/nmat1040
  2. W. Z. Zhu and S. C. Deevi, "A Reivew on the Status of Anode Materials for Solid Oxide Fuel Cells," Mater. Sci. Eng. A, 362 [1-2] 1229-39 (2003).
  3. G. B. Barbi and C. M. Mari, "High Temperature Water Electrolysis: Cathodic Behavior of Pt/yttria Stabilized Zirconia(ysz) Interface," Solid State Ionics, 6 [4] 341-51 (1982). https://doi.org/10.1016/0167-2738(82)90020-0
  4. S. P. Jiang and S. H. Chan, "A Review of Anode Materials Development in Solid Oxide Fuel Cells," J. Mater. Sci., 39 [14] 4405-39 (2004). https://doi.org/10.1023/B:JMSC.0000034135.52164.6b
  5. Y. T. An, M. J. Ji, S. M. Park, S. H. Shin, H. J. Hwang, and B. H. Choi, "Fabrication and Cell Properties of Flattened Tube Segmented-in-series Solid Oxide Fuel Cell-stack Using Decalcomania Paper," Kor. J. Mater. Res., 23 [3] 206-10 (2013). https://doi.org/10.3740/MRSK.2013.23.3.206
  6. S. T. Park, B. Y. Choi, M. J. Ji, Y. T. An, and H. J. Choi, "Effects of Ca-source on the Sintering and Electrical Properties of $La_{0.7}Ca_{0.3}Cr_{0.9}Cer_{0.1}O_{3-{\delta}}$ for Solid Oxide Fuel Cell Interconnects(in Korean)," J. Kor. Ceram. Soc., 48 [3] 246-50 (2011). https://doi.org/10.4191/KCERS.2011.48.3.246
  7. S. P. Yoon, J. Han, S. W. Nam, T. H. Lim, and S. A. Hong, "Improvement of Anode Performance by Surface Modification for Solid Oxide Fuel Cell Running on Hydrocarbon Fuel," J. Power Sources., 136 [1] 30-6 (2004). https://doi.org/10.1016/j.jpowsour.2004.05.002
  8. M. Marinsek, K. Zupan, and J. Macek, "Preparation of Ni-YSZ Composite Materials for Solid Oxide Fuel Cell Anodes by the Gel-percipitation," J. Power Sources., 86 [1-2] 383-89 (2000). https://doi.org/10.1016/S0378-7753(99)00425-5
  9. H. Kim, C. Lu, W. L. Worrel, J. M. Vohs, and R. J. Gorte, "Cu-Ni Cermet Anodes for Direct Oxidation of Methane in Solid-oxide Fuel Cells," J. Electrochem. Soc., 149 [3] A247-50 (2002). https://doi.org/10.1149/1.1445170
  10. S. Lee, J. M. Vohs, and R. J. Gorte, "A Study of SOFC Anodes Based on Cu-Ni and Cu-Co Bimetallics in $CeO_2$YSZ," J. Electrochem. Soc., 151 [9] A1319-23 (2004). https://doi.org/10.1149/1.1774184
  11. R. J. Gorte, H. Kim, and J. M. Vohs, "Novel SOFC Anodes for the Direct Electrochemical Oxidation of Hydrocarbon," J. Power Sources, 106 [1-2] 10-5 (2002). https://doi.org/10.1016/S0378-7753(01)01021-7
  12. T. Kawashima and M. Hishinuma, "Analysis of Electrical Conduction Paths in Ni/YSZ Particulate Composites Using Percolation Theory," Mater. Trans., JIM, 37 [7] 1397-403 (1996) https://doi.org/10.2320/matertrans1989.37.1397
  13. Y. T. An, B. H. Choi, M. J. Ji, K. J. Lee, and H. J. Hwang, "New Fabrication Technique for a Ni-YSZ Composite Anode from a Core-shell Structured Particle," Solid State Ionics, 207 64-8 (2012). https://doi.org/10.1016/j.ssi.2011.11.013
  14. Y. T. An, M. J. Ji, K. H. Seol, H. J. Hwang, E. Park, and B. H. Choi, "Characteristics of Flat-tubular Ceramic Supported Segmented-in-series Solid Oxide Fuel Cell on All Sides Laminating Using Decalcomania Method," J. Power Sources, 262 323-27 (2014). https://doi.org/10.1016/j.jpowsour.2014.03.136
  15. M. G. Song, J. Y. Kim, and J. D. Kim, "The Dispersion Properties of Precipitated Calcium Carbonate Suspensions Adsorbed with Alkyl Polyglycoside in Aqueous Medium," J. Colloid Interface, 226 [1] 83-90 (2000). https://doi.org/10.1006/jcis.2000.6815
  16. M. N. Rahaman, Ceramic Processing and Sintering; pp. 620-85, Vol. 10, New York, 1995.
  17. M. R. Pillai, D. Gostovoc, I. Kim, and S. A. Barnett, "Shortperiod Segmented-in-series Solid Oxide Fuel Cells on Flattened Tube Supports," J. Power Sources, 163 [2] 960-65 (2007). https://doi.org/10.1016/j.jpowsour.2006.09.079
  18. H. R. Cho, B. H. Choi, Y. T. An, S. H. Baeck, K. C. Roh, and S. M. Park, "Densification and Electrochemical Properties of YSZ Electrolyte Decalcomania Paper for SOFCs by Decalcomania," Kor. J. Met. Mater., 50 [9] 685-90 (2012). https://doi.org/10.3365/KJMM.2012.50.9.685