DOI QR코드

DOI QR Code

Localized Surface Plasmon Resonance Coupling in Self-Assembled Ag Nanoparticles by Using 3-Dimensional FDTD Simulation

3차원 FDTD Simulation을 이용한 자기조립된 Ag 나노입자의 국소표면플라즈몬공명 상호작용 현상 연구

  • Lee, Kyung-Min (Department of Materials Science and Engineering and Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Yoon, Soon-Gil (Department of Materials Science and Engineering and Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Jeong, Jong-Ryul (Department of Materials Science and Engineering and Graduate School of Energy Science and Technology, Chungnam National University)
  • 이경민 (충남대학교 재료공학과/에너지과학기술대학원) ;
  • 윤순길 (충남대학교 재료공학과/에너지과학기술대학원) ;
  • 정종율 (충남대학교 재료공학과/에너지과학기술대학원)
  • Received : 2014.07.15
  • Accepted : 2014.07.24
  • Published : 2014.08.27

Abstract

In this study, we investigated localized surface plasmon resonance and the related coupling phenomena with respect to various geometric parameters of Ag nanoparticles, including the size and inter-particle distance. The plasmon resonances of Ag nanoparticles were studied using three-dimensional finite difference time domain(FDTD) calculations. From the FDTD calculations, we discovered the existence of a symmetric and an anti-symmetric plasmon coupling modes in the coupled Ag nanoparticles. The dependence of the resonance wavelength with respect to the inter-particle distance was also investigated, revealing that the anti-symmetric mode is more closely correlated with the inter-particle distance of the Ag nanoparticles than the symmetric mode. We also found that higher order resonance modes are appeared in the extinction spectrum for closely spaced Ag nanoparticles. Plasmon resonance calculations for the Ag particles coated with a $SiO_2$ layer showed enhanced plasmon coupling due to the strengthened plasmon resonance, suggesting that the inter-particle distance of the Ag nanoparticles can be estimated by measuring the transmission and absorption spectra with the plasmon resonance of symmetric and anti-symmetric localized surface plasmons.

Keywords

References

  1. H. C. S. -J. Ko, Y. C. P. Joo, T. Kim, B. R. Lee, J. -W. Jung, H. J. Choi, M. Cha, J. -R. Jeong, I. -W. Hwang, M. H. Song, B. -S. Kim and J. Y. Kim, Nature Photon. 7, 732 (2013). https://doi.org/10.1038/nphoton.2013.181
  2. T. S. Lee and J. -R. Jeong, Kor. J. Mater. Res. 22(10), 519 (2012). https://doi.org/10.3740/MRSK.2012.22.10.519
  3. M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia and G. V. Hartland, J. Mater. Chem. 18(17), 1949 (2008). https://doi.org/10.1039/b714759g
  4. F. J. Beck, A. Polman and K. R. Catchpole. J. Appl. Phys. 105, 114310 (2009). https://doi.org/10.1063/1.3140609
  5. Loucas Tsakalakos, Nanotechnology for Photovoltaics, CRC Press, 391 (2010).
  6. H. A. Atwater and A. Polman, Nat. Mater., 9(3), 205 (2010). https://doi.org/10.1038/nmat2629
  7. Y. J. Kim, J. S. Cho, J. C. Lee, J. S. Wang, J. S. Song and J. H. Yoon, Kor. J. Mater. Res., 19(5), 245 (2009) (in Korean). https://doi.org/10.3740/MRSK.2009.19.5.245
  8. V. E. Ferry, J. N. Munday and H. A. Atwater, Adv. Mater., 22, 4794 (2010). https://doi.org/10.1002/adma.201000488
  9. K. R. Catchpole and A. Polman, Opt. Express 16, 21793 (2008). https://doi.org/10.1364/OE.16.021793
  10. S. -Y. Heo, B. -J. Park, J. -R. Jeong and S. -G. Yoon, J. Alloy Compd., 602, 255 (2014). https://doi.org/10.1016/j.jallcom.2014.03.019
  11. FDTD solutions (www.lumerical.com)
  12. G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou and C. M. Soukoulis, Opt. Lett., 30(23), 3198 (2005). https://doi.org/10.1364/OL.30.003198
  13. Kelly KL, Coronado E, Zhao LL and Schatz GC, J. Phys. Chem., B 107, 668 (2003).
  14. M. -M. Jiang, H. -Y. Chen, B. -H. Li, K. -W. Liu, C. -X. Shan and D. -Z. Shen, J. Mater. Chem. C, 2, 56 (2014). https://doi.org/10.1039/c3tc31910e