DOI QR코드

DOI QR Code

Technical Tasks and Development Current Status of Organic Solar Cells

유기 태양전지의 개발 현황과 기술 과제

  • Jang, Ji Geun (Department of Electronics and Electrical Engineering, Dankook University) ;
  • Park, Byung Min (Department of Electronics and Electrical Engineering, Dankook University) ;
  • Lim, Sungkyoo (Department of Electronics and Electrical Engineering, Dankook University) ;
  • Chang, Ho Jung (Department of Electronics and Electrical Engineering, Dankook University)
  • 장지근 (단국대학교 전자전기공학과) ;
  • 박병민 (단국대학교 전자전기공학과) ;
  • 임성규 (단국대학교 전자전기공학과) ;
  • 장호정 (단국대학교 전자전기공학과)
  • Received : 2014.05.07
  • Accepted : 2014.07.25
  • Published : 2014.08.27

Abstract

Serious environmental problems have been caused by the greenhouse effect due to carbon dioxide($CO_2$) or nitrogen oxides($NO_x$) generated by the use of fossil fuels, including oil and liquefied natural gas. Many countries, including our own, the United States, those of the European Union and other developed countries around the world; have shown growing interest in clean energy, and have been concentrating on the development of new energy-saving materials and devices. Typical non-fossil-fuel sources include solar cells, wind power, tidal power, nuclear power, and fuel cells. In particular, organic solar cells(OSCs) have relatively low power-conversion efficiency(PCE) in comparison with inorganic(silicon) based solar cells, compound semiconductor solar cells and the CIGS [$Cu(In_{1-x}Ga_x)Se_2$] thin film solar cells. Recently, organic cell efficiencies greater than 10 % have been obtained by means of the development of new organic semiconducting materials, which feature improvements in crystalline properties, as well as in the quantum-dot nano-structure of the active layers. In this paper, a brief overview of solar cells in general is presented. In particular, the current development status of the next-generation OSCs including their operation principle, device-manufacturing processes, and improvements in the PCE are described.

Keywords

References

  1. Mitsubishi Chemicals, MRS Fall meeting, Boston, USA, (2011).
  2. Shinji Aramaki, Mitsubishi Chemical Group Science & Technology Research Center, MRS Fall meeting, Boston, USA (2012).
  3. G. Yu and A. J. Heeger, J. Appl. Phys., 78(7), 4510 (1995). https://doi.org/10.1063/1.359792
  4. W. Cai, X. Gong and Y. Cao, Sol. Energy Mater. Sol. Cells, 94, 114 (2010). https://doi.org/10.1016/j.solmat.2009.10.005
  5. J. W. Kang, Y. J. Kang, S. H. Jung, M. K. Song, D. G. Kim, C. S. Kim and S. H. Kim, Sol. Energy Mater. Sol. Cells, 103, 76 (2012). https://doi.org/10.1016/j.solmat.2012.04.027
  6. K. H. Kim, S. C. Gong and H. J. Chang, Thin Solid Films, 521, 69 (2012). https://doi.org/10.1016/j.tsf.2012.03.069
  7. S. K. Jang, S. C. Gong and H. J. Chang, Synth. Met., 162, 426 (2012). https://doi.org/10.1016/j.synthmet.2012.01.008
  8. J. Jo, S. I. Na, S. S. Kim, T. W. Lee, Y. Chung, S. J. Kang, D. Vak and D. Y. Kim, Adv. Funct. Mater., 19(15), 2398 (2009). https://doi.org/10.1002/adfm.200900183
  9. H. K. Kim, Sol. Energy Mater. Sol. Cells 122, 152 (2014). https://doi.org/10.1016/j.solmat.2013.11.036
  10. S. H. Kim, B. M. Park, G. P. Kim, J. Yuh, Y. C. Chang and H. J. Chang, Synth. Met., 192, 101 (2014). https://doi.org/10.1016/j.synthmet.2014.03.019
  11. J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger and G. C. Bazan, Nature Mater., 6, 497 (2007). https://doi.org/10.1038/nmat1928
  12. J. Y. Kim, K. H. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante and A. J. Heeger, Science, 317(5835), 222 (2007). https://doi.org/10.1126/science.1141711
  13. N. Blouin, A. Michaud, D. Gendron, S. Wakim, E. Blair, R. Neagu-Plesu, M. Belletete, G, Durocher, Y. Tao and M. Leclerc, J. Am. Chem. Soc., 130, 732 (2008). https://doi.org/10.1021/ja0771989
  14. M. M. Wienk, J. M. Kroon, W. J. H. Verhees, J. Knol, J. C. Hummelen, P. A. van Hal and R. A. J. Janssen, Angew. Chem., Int. Ed., 42, 3371 (2003). https://doi.org/10.1002/anie.200351647
  15. M. Lenes, G. J. A. H. Wetzelaer, F. B. Kooistra, S. C. Veenstra, J. C. Hummelen and P. W. M. Blom, Adv. Mater., 20, 2116 (2008). https://doi.org/10.1002/adma.200702438
  16. Y. He, H. Y. Chen, J. Hou and Y. Li, J. Am. Chem. Soc., 132, 1377 (2010). https://doi.org/10.1021/ja908602j
  17. V. Amendola, G. Mattei, C. Cusan, M. Prato and M. Meneghetti, Synth. Met., 155, 283 (2005). https://doi.org/10.1016/j.synthmet.2005.01.032
  18. D. D. S. Fung, L. Qiao, W. C. H. Choy, C. Wang, W. E. I. Sha, F. Xie and S. He, J. Mater. Chem., 21, 16349 (2011). https://doi.org/10.1039/c1jm12820e
  19. P. Li, X. Li, C. Sun, G. Wang, J. Li, T. Jiu and J. Fang, Sol. Energy Mater. Sol. Cells, 126, 36 (2014). https://doi.org/10.1016/j.solmat.2014.03.038
  20. Y. I. Lee, J. H. Youn, M. S. Ryu, J. Kim, H. T. Moon and J. Jang, Org. Electron., 12(2), 353 (2011). https://doi.org/10.1016/j.orgel.2010.11.024
  21. K. Schmidt, C. J. Tassone, J. R. Niskala, A. T. Yiu, O. P. Lee, T. M. Weiss, C. Eang, J. M. Frechet, P. M. Beaujuge and M. F. Toney, Adv. Mater., 26(2), 300 (2014). https://doi.org/10.1002/adma.201303622
  22. X. Yang, A. Uddin, Renewable and Sustainable Energy Reviews, 30, 324 (2014). https://doi.org/10.1016/j.rser.2013.10.025
  23. F. Guillain, D. Tsikritzis, G. Skoulatakis, S. Kennou, G. Wantz and L. Vignau, Sol. Energy Mat. Sol. Cells, 122, 251 (2014). https://doi.org/10.1016/j.solmat.2013.12.011
  24. S. B. Kang, Y. J. Noh, S. I. Na and H. K. Kim, Sol. Energy Mater. Sol. Cells, 122, 152 (2014). https://doi.org/10.1016/j.solmat.2013.11.036
  25. D. Kaduwal, H. F. Schleiermacher, J. S. Gericke, T. Kroyer, B. Zimmermann and U. Wurfel, Sol. Energy Mat. Sol. Cells, 124, 92 (2014). https://doi.org/10.1016/j.solmat.2014.02.001
  26. S. Das, J. Joslin and T. L. Alford, Sol. Energy Mater. Sol. Cells, 124, 98 (2014). https://doi.org/10.1016/j.solmat.2014.01.048