DOI QR코드

DOI QR Code

A Genome Wide Association Study on Age at First Calving Using High Density Single Nucleotide Polymorphism Chips in Hanwoo (Bos taurus coreanae)

  • Hyeong, K.E. (School of Biotechnology, Yeungnam University) ;
  • Iqbal, A. (School of Biotechnology, Yeungnam University) ;
  • Kim, Jong-Joo (School of Biotechnology, Yeungnam University)
  • Received : 2014.04.14
  • Accepted : 2014.07.14
  • Published : 2014.10.01

Abstract

Age at first calving is an important trait for achieving earlier reproductive performance. To detect quantitative trait loci (QTL) for reproductive traits, a genome wide association study was conducted on the 96 Hanwoo cows that were born between 2008 and 2010 from 13 sires in a local farm (Juk-Am Hanwoo farm, Suncheon, Korea) and genotyped with the Illumina 50K bovine single nucleotide polymorphism (SNP) chips. Phenotypes were regressed on additive and dominance effects for each SNP using a simple linear regression model after the effects of birth-year-month and polygenes were considered. A forward regression procedure was applied to determine the best set of SNPs for age at first calving. A total of 15 QTL were detected at the comparison-wise 0.001 level. Two QTL with strong statistical evidence were found at 128.9 Mb and 111.1 Mb on bovine chromosomes (BTA) 2 and 7, respectively, each of which accounted for 22% of the phenotypic variance. Also, five significant SNPs were detected on BTAs 10, 16, 20, 26, and 29. Multiple QTL were found on BTAs 1, 2, 7, and 14. The significant QTLs may be applied via marker assisted selection to increase rate of genetic gain for the trait, after validation tests in other Hanwoo cow populations.

Keywords

References

  1. Ball, R. D. 2005. Experimental designs for reliable detection of linkage disequilibrium in unstructured random population association studies. Genetics 170:859-873. https://doi.org/10.1534/genetics.103.024752
  2. Cundiff, L. V., K. E. Gregory, and R. M. Koch. 1974. Effects of heterosis on reproduction in Hereford, Angus and Shorthorn cattle. J. Anim. Sci. 38:711-727.
  3. Daetwyler, H. D., R. Pong-Wong, B. Villanueva, and J. A. Woolliams. 2010. The impact of genetic architecture on genome-wide evaluation methods. Genetics 185:1021-1031. https://doi.org/10.1534/genetics.110.116855
  4. Daetwyler, H. D., F. S. Schenkel, M. Sargolzaei, and J. A. Robinson. 2008. A genome scan to detect quantitative trait loci for economically important traits in Holstein cattle using two methods and a dense single nucleotide polymorphism map. J. Dairy Sci. 91:3225-3236. https://doi.org/10.3168/jds.2007-0333
  5. Dematawewa, C. M. and P. J. Berger. 1998. Genetic and phenotypic parameters for 305-day yield, fertility, and survival in Holsteins. J. Dairy Sci. 81:2700-2709. https://doi.org/10.3168/jds.S0022-0302(98)75827-8
  6. Falconer, D. S. and T. F. C. Mackay. 1996. Introduction to Quantitative Genetics, 4th ed. Pearson & Prentice Hall, London, UK.
  7. Goddard, M. E. and B. J. Hayes. 2009. Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nat. Rev. Genet. 10:381-391. https://doi.org/10.1038/nrg2575
  8. Hawken, R. J., Y. D. Zhang, M. R. S. Fortes, E. Collis, W. C. Barris, N. J. Corbet, P. J. Williams, G. Fordyce, R. G. Holroyd, J. R. W. Walkley, W. Barendse, D. J. Johnston, K. C. Prayaga, B. Tier, A. Reverter, and S. A. Lehnert. 2012. Genome-wide association studies of female reproduction in tropically adapted beef cattle. J. Anim. Sci. 90:1398-1410. https://doi.org/10.2527/jas.2011-4410
  9. Hayes, B. J., J. Pryce, A. J. Chamberlain, P. J. Bowman, and M. E. Goddard. 2010. Genetic architecture of complex traits and accuracy of genomic prediction: coat colour, milk-fat percentage and type in Holstein cattle as contrasting model traits. PLoS Genet. 6(9):e1001139. https://doi.org/10.1371/journal.pgen.1001139
  10. Hoglund, J. K., B. Guldbrandtsen, G. Su, B. Thomsen, and M. S. Lund. 2009. Genome scan detects quantitative trait loci affecting female fertilitytraits in Danish and Swedish Holstein cattle. J. Dairy Sci. 92:2136-2143. https://doi.org/10.3168/jds.2008-1104
  11. Holmberg, M. and L. Andersson-Eklund. 2006. Quantitative trait loci affecting fertility and calving traits in Swedish dairy cattle. J. Dairy Sci. 89:3664-3671. https://doi.org/10.3168/jds.S0022-0302(06)72406-7
  12. Kuhn, C., J. Bennewitz, N. Reinsch, N. Xu, H. Thomsen, C. Looft, G. A. Brockmann, M. Schwerin, C. Weimann, S. Hiendleder, G. Erhardt, I. Medjugorac, M. Forster, B. Brenig, F. Reinhardt, R. Reents, I. Russ, G. Averdunk, J. Blumel, and E. Kalm. 2003. Quantitative trait loci mapping of functional traits in the German Holstein cattle population. J. Dairy Sci. 86:360-368. https://doi.org/10.3168/jds.S0022-0302(03)73614-5
  13. Lee, S. H., B. H. Choi, D. Lim, C. Gondro, Y. M. Cho, C. G. Dang, A. Sharma, G. W. Jang, K. T. Lee, D. Yoon, H. K. Lee, S. H. Yeon, B. S. Yang, H. S. Kang and S. K. Hong. 2013. Genome-wide association study identifies major loci for carcass weight on BTA14 in Hanwoo (Korean cattle). PLoS ONE 8(10):e74677. doi:10.1371/journal.pone.0074677
  14. Matukumalli, L. K., C. T. Lawley, R. D. Schnabel, J. F. Taylor, M. F. Allan, M. P. Heaton, J. O. Connell, S. S. Moore, T. P. L. Smith, T. S. Sonstegard, and C. P. Van Tassell. 2009. Development and characterization of high density SNP genotyping assay for cattle. PLoS One 4(4):e5350. https://doi.org/10.1371/journal.pone.0005350
  15. McClure, M. C., N. S. Morsci, R. D. Schnabel, J. W. Kim, P. Yao, M. M. Rolf, S. D. McKay, S. J. Gregg, R. H. Chapple, S. L. Northcutt, and J. F. Taylor. 2010. A genome scan for quantitative trait loci influencing carcass, postnatal growth and reproductive traits in commercial Angus cattle. Anim. Genet. 41:597-607. https://doi.org/10.1111/j.1365-2052.2010.02063.x
  16. Minozzi, G., E. L. Nicolazzi, A. Stella, S. Biffani, R. Negrini, B. Lazzari1, P. Ajmone-Marsan, and J. L. Williams. 2013. Genome wide analysis of fertility and production traits in italian holstein cattle. PLoS ONE 8(11):e80219. doi:10.1371/journal.pone.0080219.
  17. Neter, J., W. Wasserman, and M. H. Kutner. 1990. Applied Linear Statistical Models. 3rd ed. McGraw-Hill/Irwin, Boston, MA, USA.
  18. Olsen, H. G., B. J. Hayes, M. P. Kent, T. Nome, M. Svendsen, A. G. Larsgard, and S. Lien. 2011. Genome-wide association mapping in Norwegian Red cattle identifies quantitative trait loci for fertility and milk production onBTA12. Anim. Genet. 42:466-474. https://doi.org/10.1111/j.1365-2052.2011.02179.x
  19. Peters, S. O., K. Kizilkaya, D. J. Garrick, R. L. Fernando, J. Reecy, R. L. Weaber, G. A. Silver, and M. G. Thomas. 2013. Heritability and Bayesian genome wide association study of first service conception and pregnancy in Brangus heifers. J. Anim. Sci. 91:605-612. https://doi.org/10.2527/jas.2012-5580
  20. Pryce, J. E., R. F. Veerkamp, R. Thompson, W. G. Hill, and G. Simm. 1997. Genetic aspects of common health disorders and measures of fertility in Holstein Friesian cattle. Anim. Sci. 65:353-360. https://doi.org/10.1017/S1357729800008559
  21. Rox-strom, A., E. Strandberg, B. Berglund, U. Emanuelson, and J. Philipsson. 2001. Genetic and environmental correlations among female fertility traits and milk production in different parities of Swedish Red and White dairy cattle. Acta Agric. Scand. A. Anim. Sci. 51:7-14.
  22. Sahana, G., B. Guldbrandtsen, C. Bendixen, and M. S. Lund. 2010. Genome wide association mapping for female fertility traits in Danish and Swedish Holstein cattle. Anim. Genet. 4:579-588.
  23. Schnabel, R. D., T. S. Sonstegard, J. F. Taylor, and M. S. Ashwell. 2005. Whole genome scan to detect QTL for milk production, conformation, fertility and functional traits in two US Holstein families. Anim. Genet. 36:408-416. https://doi.org/10.1111/j.1365-2052.2005.01337.x
  24. Sasaki, S., T. Ibi, S. Ikeda, and Y. Sugimoto. 2014. A genome-wide association study reveals a quantitative trait locus for age at first calving in delta/notch-like EGF repeat containing on chromosome 2 in Japanese Black cattle. Anim. Genet. 45:285-287. https://doi.org/10.1111/age.12109
  25. Schulman, N. F., G Sahana, T. Iso-Touru, S. D. McKay, R. D. Schnabel, M. S. Lund, J. F. Taylor, J. Virta, and J. H. Vilkki. 2011. Mapping of fertility traits in Finnish Ayrshire by genome-wide association analysis. Anim. Genet. 42:263-269. https://doi.org/10.1111/j.1365-2052.2010.02149.x
  26. Van Raden, P. M. and E. J. H. Klaaskate. 1993. Genetic evaluation of length of productive life including predicted longevity of live cows. J. Dairy Sci. 76:2758-2764. https://doi.org/10.3168/jds.S0022-0302(93)77613-4
  27. Van Raden P. M. 2008. Efficient methods to compute genomic predictions. J. Dairy Sci. 91:4414-4423. https://doi.org/10.3168/jds.2007-0980

Cited by

  1. Assessing the value of phenotypic information from non-genotyped animals for QTL mapping of complex traits in real and simulated populations vol.17, pp.1, 2016, https://doi.org/10.1186/s12863-016-0394-1
  2. The Bos taurus–Bos indicus balance in fertility and milk related genes vol.12, pp.8, 2017, https://doi.org/10.1371/journal.pone.0181930
  3. Genome-wide association study for lactation persistency, female fertility, longevity, and lifetime profit index traits in Holstein dairy cattle vol.100, pp.2, 2017, https://doi.org/10.3168/jds.2016-11770
  4. Proteomics Recapitulates Ovarian Proteins Relevant to Puberty and Fertility in Brahman Heifers (Bos indicus L.) vol.10, pp.11, 2014, https://doi.org/10.3390/genes10110923