DOI QR코드

DOI QR Code

Evaluation of the Efficacy of Fermented By-product of Mushroom, Pleurotus ostreatus, as a Fish Meal Replacer in Juvenile Amur Catfish, Silurus asotus: Effects on Growth, Serological Characteristics and Immune Responses

  • Katya, Kumar (Department of Marine Bio-materials and Aquaculture/Feeds and Foods Nutritional Research Center, Pukyong National University) ;
  • Yun, Yong-Hyun (Department of Marine Bio-materials and Aquaculture/Feeds and Foods Nutritional Research Center, Pukyong National University) ;
  • Park, Gunhyun (Department of Marine Bio-materials and Aquaculture/Feeds and Foods Nutritional Research Center, Pukyong National University) ;
  • Lee, Jeong-Yeol (Department of Aquaculture and Aquatic Science, Kunsan Nat'l University) ;
  • Yoo, Gwangyeol (The Province of Chungcheongnam-do Fisheries Research Institute) ;
  • Bai, Sungchul C. (Department of Marine Bio-materials and Aquaculture/Feeds and Foods Nutritional Research Center, Pukyong National University)
  • Received : 2014.01.16
  • Accepted : 2014.05.08
  • Published : 2014.10.01

Abstract

The present experiment was conducted to evaluate the efficacy of dietary fermented by-product of mushroom, Pleurotus ostreatus, (FBPM) as a fish meal (FM) replacer in juvenile Amur catfish, Silurus asotus. A total number of 225 fish averaging $5.7{\pm}0.1g$ ($mean{\pm}standard$ deviation) were fed one of the five experimental diets formulated to replace FM with FBPM at 0%, 5%, 10%, 20%, and 30% ($FBPM_0$, $FBPM_5$, $FBPM_{10}$, $FBPM_{20}$, and $FBPM_{30}$, respectively). At the end of eight weeks of the experiment, average weight gain (WG) of fish fed $FBPM_0$ or $FBPM_5$ were significantly higher than those of fish fed $FBPM_{20}$ or $FBPM_{30}$ diets (p<0.05). However, there was no significant differences in WG among the fish fed $FBPM_0$, $FBPM_5$ or $FBPM_{10}$, and between fish fed $FBPM_{10}$ or $FBPM_{20}$, and also between those fed $FBPM_{20}$ or $FBPM_{30}$ diets. Lysozyme activity of fish fed $FBPM_0$ or $FBPM_5$ were significantly higher than those of fish fed $FBPM_{10}$, $FBPM_{20}$ or $FBPM_{30}$ diets (p<0.05). The chemiluminescent response of fish fed $FBPM_5$ was significantly higher than those of fish fed $FBPM_0$, $FBPM_{20}$ or $FBPM_{30}$ diets (p<0.05). Broken line regression analysis of WG suggested that the maximal dietary inclusion level for FBPM as a FM replacer could be 6.3% without any adverse effects on whole body composition and on serological characteristics. Therefore, these results may indicate that the maximal dietary inclusion level of FBPM as a FM replacer could be 6.3% in juvenile Amur catfish.

Keywords

References

  1. Abdel-Warith, A., P. M. Russell, and S. J. Davies. 2001. Inclusion of a commercial poultry by-product meal as a protein replacement of fish meal in practical diets for the African catfish, Clarias gariepinus. Aquac. Res. 32:296-305. https://doi.org/10.1046/j.1355-557x.2001.00053.x
  2. Adamovic, M., G. Grubic, I. Milenkovic, R. Jovanovic, R. Protic, L. Stretenovic, and L. Stoicevic. 1998. The biodegradation of wheat straw by Pleurotus ostreatus mushrooms and its use in cattle feeding. Anim. Feed Sci. Technol. 71:357-362. https://doi.org/10.1016/S0377-8401(97)00150-8
  3. Alexis, M. N., E. Paraparaskewa, and V. Theochari. 1985. Formulation of practical diets for rainbow trout (Salmo gairdneri) made by partial or complete substitution of fish meal by poultry by-products and certain plant by-products. Aquaculture 50:61-73. https://doi.org/10.1016/0044-8486(85)90153-X
  4. AOAC. 1995. Official Methods of Analysis. 16th ed. Association of Official Analytical Chemists. Arlington, Virginia, USA.
  5. Bai, S. C. and K. W. Kim. 1997. Effects of dietary animal protein sources on growth and body composition in Korean rockfish, Sebastes schlegeli. J. Aquac. 10:77-85 (in Korean with English Abstr).
  6. Bai, S. C., H. K. Jang, and E. S. Cho. 1998. Possible use of the animal by-product mixture as a dietary fish meal replacer in growing common carp (Cyprinus carpio). J. Korean Fish. Soc. 31:380-385.
  7. Bai, S. C., H. K. Jang, and K. H. Kim. 1997. Evaluation of feather meal and meat and bone meal as the fish meal replacer in Israeli carp diets. J. Aquac. 10:153-161.
  8. Banik, S. and R. Nandi. 2004. Effect of supplementation of rice straw with biogas residual slurry manure on the yield, protein and mineral contents of oyster mushroom. Ind. Crops Prod. 20: 311-319. https://doi.org/10.1016/j.indcrop.2003.11.003
  9. Bishop, C. D., R. A. Angus, and S. A. Watts. 1995. The use of feather meal as a replacement for fish meal in the diet of Oreochromis niloticus fry. Bioresour. Technol. 54:291-295. https://doi.org/10.1016/0960-8524(95)00146-8
  10. Blaxhall, P. C. 1972. The haematological assessment of the health of freshwater fish. J. Fish Biol. 4:593-604. https://doi.org/10.1111/j.1095-8649.1972.tb05704.x
  11. Brown, B. A. 1980. Routine hematology procedure. Hematology: Principles and Procedures. Lea and Febiger, Philadelphia, PA, USA. pp. 71-112.
  12. Brown, P. B., R. J. Strange, and K. R. Robbins. 1985. Protein digestibility coefficients for yearling channel catfish fed high protein feedstuffs. Prog. Fish Cult. 47:94-97. https://doi.org/10.1577/1548-8640(1985)47<94:PDCFYC>2.0.CO;2
  13. Bureau, D. P., A. M. Harris, D. J. Bevan, L. A. Simmons, P. A. Azevedo, and C. Y. Cho. 2000. Feather meals and meat and bone meals from different origins as protein sources in rainbow trout, Oncorhynchus mykiss, diets. Aquaculture 181: 281-291. https://doi.org/10.1016/S0044-8486(99)00232-X
  14. Carter, C. G. and R. C. Hauler. 2000. Fish meal replacement by plant meals in extruded feeds for Atlantic salmon, Salmo salar L. Aquaculture 185:299-311. https://doi.org/10.1016/S0044-8486(99)00353-1
  15. Chang, S. T. 1999. World production of cultivated and medicinal mushrooms in 1997 with emphasis on Lentinus edodes (Berk) Sing, in China. Int. J. Med. Mushrooms 1:291-300. https://doi.org/10.1615/IntJMedMushr.v1.i4.10
  16. Choi, S. M., X. J. Wang, G. J. Park, S. R. Lim, K. W. Kim, S. C. Bai, and I. S. Shin. 2004. Dietary dehulled soybean meal as a replacement for fish meal in fingerling and growing olive flounder, Paralichthys olivaceus (Temminck et Schlegel). Aquac. Res. 35:410-418. https://doi.org/10.1111/j.1365-2109.2004.01046.x
  17. Day, O. J. and H. G. Plascencia Gonzalez. 2000. Soybean protein concentrate as a protein source for turbot, Scophthalmus maximus L. Aquac. Nutr. 6:221-228. https://doi.org/10.1046/j.1365-2095.2000.00147.x
  18. Duthie, G. G. and L. Tort. 1985. Effect of dorsal aortic cannulatton on the respiration and haematology of the Mediterranean dog fish, Scyllorhlnus canlcula L. Comp. Biochem. Physlol. A Physlol. 81A:879-883.
  19. FAO. 2012. FISHSTAT Plus, universal software for fishery statistical time series. Food and Agriculture Organization, United Nations, Rome. Electronic webpage.
  20. Fasakin, E. A., R. D. Serwata, and S. J. Davies. 2005. Comparative utilization of rendered animal derived products with or without composite mixture of soybean meal in hybrid tilapia (Oreochromis niloticus${\times}$Oreochromis mossambicus) diets. Aquaculture 249:329-338. https://doi.org/10.1016/j.aquaculture.2005.02.059
  21. Gordon, M., B. Bihari, E. Goosby, R. Gorter, M. Greco, M. Guralnik, T. Mimura, V. Rudinicki, R. Wong, and Y. Kaneko. 1998. A placebocontrolled trial of the immune modulator, lentinan, in HIV-positive patients: A phase I/II trial. J. Med. 29:305-330.
  22. Hasan, M. R., M. S. Haq, P. M. Das, and G. Mowlah. 1997. Evaluation of poultry-feather meal as a dietary protein source for Indian major carp, Labeo rohita, fry. Aquaculture 151:47-54. https://doi.org/10.1016/S0044-8486(96)01498-6
  23. Hughes, S. G. 1993. Single-feeding response of chinook salmon fry to potential feed intake modifiers. Prog. Fish Cult. 55:40-42. https://doi.org/10.1577/1548-8640(1993)055<0040:SFROCS>2.3.CO;2
  24. Kader, M. A., S. Koshio, M. Ishikawa, S. Yokoyama, and M. Bulbul. 2010. Supplemental effects of some crude ingredients in improving nutritive values of low fishmeal diets for red sea bream, Pagrus major. Aquaculture 308:136-144. https://doi.org/10.1016/j.aquaculture.2010.07.037
  25. Kim, D. H. and B. Austin. 2006. Innate immune responses in rainbow trout (Oncorhynchus mykiss Walbaum) induced by probiotics. Fish Shellish Immunol. 21:513-524. https://doi.org/10.1016/j.fsi.2006.02.007
  26. Kim, M. K., H. G. Lee, J. A. Park, S. K. Kang, and Y. J. Choi. 2011. Recycling of fermented sawdust-based oyster mushroom spent substrate as a feed supplement for postweaning calves. Asian Australas. J. Anim. Sci. 24:493-499. https://doi.org/10.5713/ajas.2011.10333
  27. Kim, Y. C., G. Y. Yoo, X. J. Wang, S. H. Lee, I. S. Shin, and S. C. Bai. 2008. Long term feeding effects of dietary dehulled soybean meal as a fish meal replacer in growing olive flounder, Paralichthys olivaceus. Asian Australas. J. Anim. Sci. 21:868-872. https://doi.org/10.5713/ajas.2008.70496
  28. Lakhanpal, T. N. and M. Rana. 2005. Medicinal and nutraceutical genetic resources of mushrooms. Plant Genet. Resour.: Characterization and utilization 3:288-303. https://doi.org/10.1079/PGR200581
  29. Lee, K. J. and S. C. Bai. 1997a. Haemoglobin powder as a dietary fish meal replacer in juvenile Japanese eel, Anguilla japonica (Temminck et Schlegel). Aquac. Res. 28:509-516. https://doi.org/10.1111/j.1365-2109.1997.tb01069.x
  30. Lee, K. J. and S. C. Bai. 1997b. Hemoglobin powder as a dietary animal protein source for juvenile Nile tilapia. Prog. Fish-Cult. 59:266-271. https://doi.org/10.1577/1548-8640(1997)059<0266:HPAADA>2.3.CO;2
  31. Lim, S. R., S. M. Choi, X. J. Wang, K. W. Kim, I. S. Shin, T. S. Min, and S. C. Bai. 2004. Effects of dehulled soybean meal as a fish meal replacer in diets for fingerling and growing Korean rockfish, Sebastes schlegeli. Aquaculture 231:457-468. https://doi.org/10.1016/j.aquaculture.2003.09.008
  32. McGoogan, B. B. and M. D. Gatlin III. 1997. Effects of replacing fish meal with soybean meal in diets for red drum, sciaenops ocellatus, and potential for palatability enhancement. J. World Aquac. Soc. 28:374-385. https://doi.org/10.1111/j.1749-7345.1997.tb00284.x
  33. Naylor, L. R., W. R. Hardy, P. D. Bureau, A. Chiu, M. Elliott, P. A. Farrell, I. Forster, M. D. Gatlin, J. R. Goldburg, K. Hua, and D. P. Nichols. 2009. Feeding aquaculture in an era of finite resources. Proc. Natl. Acad. Sci. USA. 106:15103-15110. https://doi.org/10.1073/pnas.0905235106
  34. Oh, Y. K., W. M. Lee, C. W. Choi, K. H. Kim, S. K. Hong, S. C. Lee, Y. J. Seol, W. S. Kwak, and N. J. Choi. 2010. Effects of spent mushroom substrates supplementation on rumen fermentation and blood metabolites in Hanwoo steers. Asian Australas. J. Anim. Sci. 23:1608-1613. https://doi.org/10.5713/ajas.2010.10200
  35. Panigrahi, A., V. Kiron, T. Kobayashi, J. Puangkaew, S. Satoh, and H. Sugita. 2004. Immune responses in rainbow trout, Oncorhynchus mykiss, induced by a potential probiotic bacteria Lactobacillus rhamnosus JCM1136. Vet. Immunol. Immunopathol. 102:379-388. https://doi.org/10.1016/j.vetimm.2004.08.006
  36. Refstie, S., T. Storebakken, G. Baeverfjord, and A. Roem. 2001. Long-term protein and lipid growth of Atlantic salmon (Salmo salar) fed diets with partial replacement of fish meal by soy protein products at medium or high lipid levels. Aquaculture 193:91-106. https://doi.org/10.1016/S0044-8486(00)00473-7
  37. Royse, D. J. 2002. Influence of spawn rate and commercial delayed release nutrient levels on Pleurotus cornucopiae (oyster mushroom) yield, size and time to production. Appl. Microbiol. Biotechnol. 58:527-531. https://doi.org/10.1007/s00253-001-0915-2
  38. Saurabh, S. and P. K. Sahoo. 2008. Lysozyme: an important defence molecule of fish innate immune system. Aquac. Res. 39:223-239. https://doi.org/10.1111/j.1365-2109.2007.01883.x
  39. Scott, A. L., P. H. Klesius. 1981. Chemiluminescence: a novel analysis of phagocytosis in fish. Dev. Biol. Stand. 49:243-254.
  40. Secombes, C. J. 1994. Macrophage activation in fish. Modulators of Fish Immune Responses 1:49-57.
  41. Shimizu, C., A. Ibrahim, T. Tokoro, and Y. Shirakawa. 1990. Feeding stimulation in sea bream, Pagrus major, fed diets supplemented with Antarctic krill meals. Aquaculture 89:43-53. https://doi.org/10.1016/0044-8486(90)90232-C
  42. Silvana, A., M. J. Pianzzola, M. Soubes, and M. P. Cerdeiras. 2006. Biodegradation of agroindustrial wastes by Pleurotus spp. for its use as ruminant feed. Electron. J. Biotechnol. 9:215-220.
  43. Sonck, E., E. Stuyven, B. Goddeeris, and E. Cox. 2010. The effect of beta-glucans on porcine leukocytes. Vet. Immunol. Immunopathol. 135:199-207. https://doi.org/10.1016/j.vetimm.2009.11.014
  44. Song, Y. M., S. D. Lee, R. Chowdappa, H. Y. Kim, S. K. Jin, and I. S. Kim. 2007. Effects of fermented oyster mushroom (Pleurotus ostreats) by-product supplementation on growth performance, blood parameters and meat quality in finishing berkshire pigs. Animal 1:301-307. https://doi.org/10.1017/S1751731107683785
  45. Suarez, J. A., C. Tudela, D. Davis, Z. Daugherty, M. Taynor, L. Glass, R. Hoenig, A. Buentello, and D. D. Beenetti. 2013. Replacement of fish meal by a novel non-GM variety of soybean meal in cobia, Rachycentron canadum: Ingredient nutrient digestibility and growth performance. Aquaculture 416-417:328-333. https://doi.org/10.1016/j.aquaculture.2013.09.049
  46. Sun, M. H., Y. C. Kim, O. E. Okorie, S. Devnath, G. Y. Yoo, S. H. Lee, Y. K. Jo, and S. C. Bai. 2007. Use of fermented fisheries by-products and soybean curd residues mixture as a fish meal replacer in diets of juvenile olive flounder, Paralichthys olivaceus. J. World Aquac. Soc. 38:543-549. https://doi.org/10.1111/j.1749-7345.2007.00128.x
  47. Vazzana, M., D. Parrinello, and M. Cammarata. 2003. Chemiluminescence response of $\beta$-glucan stimulated leukocytes isolated from different tissues and peritoneal cavity of Dicentrarchus labrax. Fish Shellfish. Immunol. 14:423-434. https://doi.org/10.1006/fsim.2002.0445
  48. Wasser, S. P. and A. L. Weis. 1999. Therapeutic effects of substances occurring in higher Basidiomycetes mushrooms: A modern perspective. Crit. Rev. Immunol. 19:65-96.
  49. Won, K. M., S. M. Kim, and S. I. Park. 2004. The effects of $\beta$-1, 3/1, 6-linked glucan in the diet on immune responses of olive flounder, Paralichthys olivaceus by oral administration. J. Fish Pathol. 17:29-38 (written in Korean with English abstract).
  50. World Bank Commodity. 2010. Commodity price data of the World Bank. Washington DC, USA. Electronic webpage.
  51. Xu, C., Y. Cai, J. Zhang, and H. Matsuyama. 2010. Feeding value of total mixed ration silage with spent mushroom substrate. Anim. Sci. J. 81:194-198. https://doi.org/10.1111/j.1740-0929.2009.00728.x
  52. Yoo, G. Y., S. H. Lee, Y. C. Kim, O. E. Okorie, G. J. Park, Y. O. Han, S. M. Choi, J. C. Kang, M. H. Sun, and S. C. Bai. 2007. Effects of dietary $\beta$-1,3 glucan and feed stimulants in juvenile olive flounder, Paralichthys olivaceus. J. World Aquac. Soc. 38:138-145. https://doi.org/10.1111/j.1749-7345.2006.00082.x

Cited by

  1. Effects of Eryngii mushroom (Pleurotus eryngii) and Lactobacillus plantarum on growth performance, immunity and disease resistance of Pangasius catfish (Pangasius bocourti, Sauvage 1880) vol.42, pp.5, 2016, https://doi.org/10.1007/s10695-016-0230-6
  2. fed by solid-state fermentation diet vol.23, pp.6, 2017, https://doi.org/10.1111/anu.12506
  3. Diet supplemented with Grifola gargal mushroom enhances growth, lipid content, and nutrient retention of juvenile rainbow trout (Oncorhynchus mykiss) vol.25, pp.5, 2017, https://doi.org/10.1007/s10499-017-0154-x
  4. Efficacy of insect larval meal to replace fish meal in juvenile barramundi, Lates calcarifer reared in freshwater vol.9, pp.4, 2017, https://doi.org/10.1007/s40071-017-0178-x
  5. Substitution of the fish meal by the earthworm and maggot meal in the feed of Nile tilapia Oreochromis niloticus reared in freshwater vol.10, pp.6, 2018, https://doi.org/10.5897/IJFA2018.0682
  6. Wheat grains fermented by fungal mycelia (Pleurotus ostreatus or Lentinus edodes) as alternative feed ingredients for juvenile rainbow trout (Oncorhynchus mykiss) pp.1573-143X, 2018, https://doi.org/10.1007/s10499-018-0286-7
  7. Lactic Acid Bacteria in Shellfish: Possibilities and Challenges vol.28, pp.2, 2020, https://doi.org/10.1080/23308249.2019.1683151
  8. Nephroprotective Effect of Pleurotus ostreatus and Agaricus bisporus Extracts and Carvedilol on Ethylene Glycol-Induced Urolithiasis: Roles of NF-κB, p53, Bcl-2, Bax and Bak vol.10, pp.9, 2014, https://doi.org/10.3390/biom10091317
  9. Biotechnological Addition of β-Glucans from Cereals, Mushrooms and Yeasts in Foods and Animal Feed vol.9, pp.11, 2021, https://doi.org/10.3390/pr9111889