DOI QR코드

DOI QR Code

파워디바이스 패키징의 열제어 기술과 연구 동향

Overview on Thermal Management Technology for High Power Device Packaging

  • 김광석 (성균관대학교 나노과학기술학과) ;
  • 최돈현 (성균관대학교 신소재공학과) ;
  • 정승부 (성균관대학교 신소재공학과)
  • 투고 : 2014.06.12
  • 심사 : 2014.06.19
  • 발행 : 2014.06.30

초록

Technology for high power devices has made impressive progress in increasing the current density of power semiconductor, system module, and design optimization, which realize high power systems with heterogeneous functional integration. Depending on the performance development of high power semiconductor, packaging technology of high power device is urgently required for efficiency improvement of the device. Power device packaging must provide superior thermal management due to high operating temperature of power modules. Here we, therefore, review critical challenges of typical power electronics packaging today including core assembly processes, component materials, and reliability evaluation regulations.

키워드

참고문헌

  1. T. Stockmier, "From Packaging to 'Un'-Packaging-Trends in Power Semiconductor Modules", Proc. 20th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Orlando, 12, IEEE Power Electronics Society (PELS) (2008).
  2. S. Dieckerhoff, T. Kirfe, T. Wernicke, C. Kallmayer, A. Ostmann, E. Jung, B. Wunderle and H. Reichl, "Electric Characteristics of Planar Interconnect Technologies for Power MOSFETs", Proc. 38th IEEE Power Electronics Specialists Conference (PESC), Orlando, 1036, IEEE Power Electronics Society (PELS) (2007).
  3. R. John, O. Vermesan and R. Bayerer, "High Temperature Power Electronics IGBT Modules for Electrical and Hybrid Vehicles", Proc. International Conference on High Temperature Electronics (HiTEC), Oxford, 199, International Microelectronics Assembly and Packaging Society (iMAPS) (2009).
  4. Z. Liang, "Status and Trend of Automotive Power Packaging", Prc. 24th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Bruges, 325, IEEE Power Electronics Society (PELS) (2012).
  5. M. Bakowski, "Roadmap for SiC power devices", Journal of Telecommunications and information technology, 3-4, 19 (2000).
  6. Y. Liu, "Challenges of Power Electronic Packaging", in Power Electronic Packaging: Design, Assembly Process, Reliability and Modeling, pp.1-8, Springer Science+Business Media, New York (2012).
  7. J. M. Hornberger, E. Cilio, R. M. Schupbach, A. B. Lostetter and H. A. Mantooth, "A High-Temperature Multichip Power Module (MCPM) Inverter Utilizing Silicon Carbide (SiC) and Silicon on Insulator (SOI) Electronics", Proc. 37th IEEE Power Electronics Specialists Conference (PESC), Jeju, 1, IEEE Power Electronics Society (PELS) (2006).
  8. N. Y. N. Shammas, "Present problems of power module packaging technology",Microelectron. Reliab., 43, 519 (2003). https://doi.org/10.1016/S0026-2714(03)00019-2
  9. E. Wolfgang, N. Selinger and G. Lugert, "High-Temperature Power Electronics: Challenges and Opportunities", Proc. 2nd International Conference on Integrated Power Electronics Systems (CIPS), Bremen, 43, IEEE Power Electronics Society (PELS) (2002).
  10. T. Funaki, J. Balda, J. Junghans, A. Kashyap, F. Barlow, A. Mantooth, T. Kimoto and T. Hikihara, "Power Conversion with SiC Devices at Extremely High Ambient Temperatures", Proc. 36th IEEE Power Electronics Specialists Conference (PESC), Recife, 2030, IEEE Power Electronics Society (PELS) (2005).
  11. J. N. Calata, J. G. Bai, X. Liu, S. Wen and G.-Q. Lu, "Three- Dimensional Packaging for Power Semiconductor Devices and Modules", IEEE Transactions on Advanced Packaging, 28(3), 404 (2005). https://doi.org/10.1109/TADVP.2005.852837
  12. P. Hansen, and P. McCluskey, "Failure Models in Power Device Interconnects", Proc. 12th European Conference on Power Electronics and Applications (EPE), Aalborg, 1, IEEE Power Electronics Society (PELS) (2007).
  13. E. Milke and T. Mueller, "High Temperature Behaviour and Reliability of Al-Ribbon for Automotive Applications", Proc. 2nd Electronics System-Integration Technology Conference (ESTC), Greenwich, 417, IEEE Components, Packaging and Manufacturing Technology Society (CPMT) (2008).
  14. W. Steinhgl, G. Schindler, G. Steinlesberger, M. Traving and M. Engelhardt, "Comprehensive Study of The Resistivity of Copper Wires with Lateral Dimensions of 100 nm and Smaller", J. Appl. Phys., 97, 023706 (2005). https://doi.org/10.1063/1.1834982
  15. U. Scheuermann, "Reliability of Planar SKiN Interconnect Technology", Proc. 7th International Conference on Integrated Power Electronics Systems (CIPS), Nuremberg, 1, IEEE Power Electronics Society (PELS) (2012).
  16. S. Thomas, "Reliability of Cu Wire Bonding on Active Area for Automotive Applications", Proc. 11th Electronics Packaging Technology Conference (EPTC), Singapore, 363, IEEE Components, Packaging and Manufacturing Technology Society (CPMT) (2009).
  17. S. Bader, W. Gust and H. Hieber, "Rapid Formation of Intermetallic Compounds by Interdiffusion in The Cu-Sn and Ni- Sn Systems", Acta. Metall. Mater., 43(1), 329 (1995).
  18. K. Guth, D. Siepe, J. Grlich, H. Torwesten, R. Roth, F. Hille and F. Umbach, "New Assembly and Interconnects Beyond Sintering Methods", Proc. 6th International Conference on Integrated Power Electronics Systems (CIPS), Nuremberg, 232, IEEE Power Electronics Society (PELS) (2010).
  19. M. Knoerr, "Power Semiconductor Joining Through Sintering of Silver Nanoparticles: Evaluation of Influence of Parameters Time, Temperature and Pressure on Density, Strength and Reliability", Proc. 6th International Conference on Integrated Power Electronics Systems (CIPS), Nuremberg, 1, IEEE Power Electronics Society (PELS) (2010).
  20. L. Coppola, D. Huff, F. Wang, R. Burgos and D. Boroyevich, "Survey on High-Temperature Packaging Materials for SiCBased Power Electronics Modules", Proc. 38th IEEE Power Electronics Specialists Conference (PESC), Orlando, 2234, IEEE Power Electronics Society (PELS) (2007).
  21. D. B. Miracle, "Metal Matrix Composites-From Science to Technological Significance", Comp. Sci. Technol., 65, 2526 (2005). https://doi.org/10.1016/j.compscitech.2005.05.027
  22. D. Schweitzer, H. Pape and L. Chen, "Transient Measurement of The Junction-to-Case Thermal Resistance Using Structure Functions: Chances and Limits", Proc. 24th Annual IEEE Semiconductor Thermal Measurement and Management Symposium, San Jose, 191, IEEE Components, Packaging and Manufacturing Technology Society (CPMT) (2008).
  23. J. Biela, U. Badstuebner and J. W. Kolar, "Impact of Power Density Maximization on Efficiency of DC-DC Converter Systems", IEEE Transactions on Power Electronics., 24(1), 288 (2009). https://doi.org/10.1109/TPEL.2009.2006355
  24. Z. Xu, F. Xu, D. Jiang, W. Cao and F. Wang, "A High Temperature Traction Inverter with Reduced Cooling and Improved Efficiency for HEV Applications", Proc. 5th IEEE Energy Conversion Congress and Exposition (ECCE), Denver, 2786, IEEE Power Electronics Society (PELS) (2013).
  25. Z. Liang, P. Ning, F. Wang and L. Marlino, "A Phase-Leg Power Module Packaged with Optimized Planar Interconnections and Integrated Double Sided Cooling", IEEE J. Emerging and Selected Topics in Power Electronics., PP(99), 1 (2014)
  26. Z. Liang, P. Ning and F. Wang, "Development of Advanced All-SiC Power Modules", IEEE Trans. Power Electron., 29(5), 2289 (2014). https://doi.org/10.1109/TPEL.2013.2289395
  27. Y. T. Lee, S. Shanmugan and D. Mutharasu, "Thermal Resistance of CNTs-Based Thermal Interface Material for High Power Solid State Device Packages", Appl. Phys. A., 114(4), 1145 (2014). https://doi.org/10.1007/s00339-013-7676-5
  28. J. Adam, "New Correlations Between Electrical Current and Temperature Rise in PCB Traces", Proc. 20th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMITHEM), San Jose, 292, IEEE Components, Packaging and Manufacturing Technology Society (CPMT) (2004).
  29. Y. Ling, "On Current Carrying Capacities of PCB Traces", Proc. 52nd Electronic Components and Technology Conference (ECTC), San Diego, 1683, IEEE Components, Packaging, and Manufacturing Society (CPMT) (2002).
  30. Half etching method for high current PCB, TSS Inc. from http://www.tssg.com/substrate/special.html
  31. H. Lu, C. Bailey and C. Yin, "Design for Reliability of Power Electronics Modules", Microelectron. Reliab., 49(9-11), 1250 (2009). https://doi.org/10.1016/j.microrel.2009.07.055
  32. M. Thoben, K. Mainka, R. Bayerer, I. Graf and M. Mnzer, "From Vehicle Drive Cycle to Reliability Testing of Power Modules for Hybrid Vehicle Inverter", Proc. 30th International Conference for Power Conversion and Intelligent Motion (PCIM) Europe, Nuremberg, 651, Mesago PCIM GmbH (2008).
  33. R. Bayerer, T. Hermann, T. Licht, J. Lutz, and M. Feller, "Model for Power Cycling Lifetime of IGBT Modules- Various Factors Influencing Lifetime", Proc. 5th International Conference on Integrated Power Electronics Systems (CIPS), Nuremberg, 1, IEEE Power Electronics Society (PELS) (2008).

피인용 문헌

  1. Power Module Packaging Technology with Extended Reliability for Electric Vehicle Applications vol.21, pp.4, 2014, https://doi.org/10.6117/kmeps.2014.21.4.001
  2. Numerical Prediction of Solder Fatigue Life in a High Power IGBT Module Using Ribbon Bonding vol.16, pp.5, 2014, https://doi.org/10.6113/jpe.2016.16.5.1843