DOI QR코드

DOI QR Code

Study of micro flip-chip process using ABL bumps

ABL 범프를 이용한 마이크로 플립 칩 공정 연구

  • Ma, Junsung (Graduate School of NID Fusion Technology, Seoul National Univ. of Science and Technology) ;
  • Kim, Sungdong (Department of Mechanical System Design Engineering, Seoul National University of Science and Technology) ;
  • Kim, Sarah Eunkyung (Graduate School of NID Fusion Technology, Seoul National Univ. of Science and Technology)
  • 마준성 (서울과학기술대학교 NID융합기술대학원) ;
  • 김성동 (서울과학기술대학교 기계시스템디자인공학과) ;
  • 김사라은경 (서울과학기술대학교 NID융합기술대학원)
  • Received : 2014.05.23
  • Accepted : 2014.06.02
  • Published : 2014.06.30

Abstract

One of the important developments in next generation electronic devices is the technology for power delivery and heat dissipation. In this study, the Cu-to-Cu flip chip bonding process was evaluated using the square ABL power bumps and circular I/O bumps. The difference in bump height after Cu electroplating followed by CMP process was about $0.3{\sim}0.5{\mu}m$ and the bump height after Cu electroplating only was about $1.1{\sim}1.4{\mu}m$. Also, the height of ABL bumps was higher than I/O bumps. The degree of Cu bump planarization and Cu bump height uniformity within a die affected significantly on the misalignment and bonding quality of Cu-to-Cu flip chip bonding process. To utilize Cu-to-Cu flip chip bonding with ABL bumps, both bump planarization and within-die bump height control are required.

차세대 전자 소자 기술에서 전력전달은 소자의 전력을 낮추고 발열로 인한 문제 해결을 위해서 매우 중요한 기술로 대두되고 있다. 본 연구에서는 직사각형 ABL 전력 범프를 이용한, Cu-to-Cu 플립 칩 본딩 공정의 신뢰성 문제에 대해 살펴보았다. 다이 내 범프 높이 차이는 전기도금 후 CMP 공정을 진행했을 경우 약 $0.3{\sim}0.5{\mu}m$ 이었고, CMP 공정을 진행하지 않았을 경우는 약 $1.1{\sim}1.4{\mu}m$으로 나타났다. 또한 면적이 큰 ABL 전력 범프가 입출력 범프 보다 높이가 높게 나타났다. 다이 내 범프 높이 차이로 인해 플립 칩 본딩 공정 시 misalignment 문제가 발생하였고, 이는 본딩 quality 에도 영향을 미쳤다. Cu-to-Cu 플립 칩 공정을 위해선 다이 내 범프 높이 균일도와 Cu 범프의 평탄도 조절이 매우 중요한 요소라 하겠다.

Keywords

References

  1. K. Oh, J. Ma, S. Kim and S. E. Kim, "Interconnect Process Technology for High Power Delivery and Distribution", J. Microelectron. Packag. Soc., 19(3), 9 (2012).
  2. N. H. Khan, S. M. Alam and S. Hassoun, "Power Delivery Design for 3-D ICs Using Different Through-Silicon Via (TSV) Technologies", IEEE Trans. VLSI systems, 19(4), 647 (2011). https://doi.org/10.1109/TVLSI.2009.2038165
  3. R. Plieninger, M. Dittes and K. Pressel, "Modern IC packaging trends and their reliability implications", Microelectron. Reliab., 46(9), 1868 (2006). https://doi.org/10.1016/j.microrel.2006.08.008
  4. K. Oh, J. S. Ma, S. Kim and S. E. Kim, "Fabrication of Advanced Bump Layer for IC Power Delivery", J. Nanosci. Nanotech., 13, 6447 (2013). https://doi.org/10.1166/jnn.2013.7626
  5. M. Ketkar and E. Chiprout, "A microarchitecture based framework for pre- and post-silicon power delivery analysis", Microarchitecture, 42, 179 (2009).
  6. N. H. Khan, S. M. Alam and S. Hassoun, "System level comparison of power delivery design for 2D and 3D ICs 3D System Integration", IEEE 3DIC, Osaka, Japan, Sep. 28, 1 (2009).
  7. M. Budnik and K. Roy, "A Power Delivery and Decoupling Network Minimizing Ohmic Loss and Supply Voltage Variation in Silicon Nanoscale Technologies", IEEE Trans. VLSI Systems, 14(12), 1336 (2006). https://doi.org/10.1109/TVLSI.2006.887810
  8. G. Schrom, P. Hazucha, J. Hahn, V. Kursun, D. Gardner, S. Narendra, T. Karnik and V. De, "Feasibility of Monolithic and 3D-Stacked DC-DC Converters for Microprocessors in 90 nm Technology Generation", ISLPED, Newport, US, Aug. 9, 263 (2004).
  9. I. Song, M. Lee, S. Kim and S. E. Kim, "Development of Cu CMP Process for Cu-to-Cu Wafer Stacking", J. Microelectron. Packag. Soc., 20(4), 81 (2013). https://doi.org/10.6117/kmeps.2013.20.4.081
  10. E. Malysha, U. Landau and S. Chivilikhin, "Modeling the deposit thickness distribution in Cu electroplating of semiconductor wafer interconnects", Proc. of the AIChE, Nov. 16, San Francisco, US (2003).
  11. S. Kang, J. Lee, E. Kim, N. Lim, S. Kim, S. Kim and S. E. Kim, "Fabrication and Challenges of Cu-to-Cu Wafer Bonding", J. Microelectron. & Packag. Soc., 19(2), 29 (2012). https://doi.org/10.6117/kmeps.2012.19.2.029
  12. R. Stengl, T. Tan and U. Gsele, "A model for the silicon wafer bonding process", Jpn. J. Appl. Phys., 28(1), 1735 (1989). https://doi.org/10.1143/JJAP.28.1735
  13. P. Gueguen, L. Di Cioccio, P. Gergaud, M. Rivoire, D. Scevola, M. Zussy, A. Charvera, L. Ballya, D. Lafonda and L. Clavelier, "Copper direct bonding characterization and its interests for 3D integration", J. Electrochem. Soc., 156(10), H772 (2009). https://doi.org/10.1149/1.3187271
  14. E. Kim, M. Lee, S. Kim and S. E. Kim, "Ti/Cu CMP Process for Wafer Level 3D Integration", J. Microelectron. Packag. Soc., 19(3), 37 (2012). https://doi.org/10.6117/kmeps.2012.19.3.037