DOI QR코드

DOI QR Code

Fabrication of a Ultrathin Ag Film on a Thin Cu Film by Low-Temperature Immersion Plating in an Grycol-Based Solution

글리콜 용매 기반 저온 치환 은도금법으로 형성시킨 동박막 상 극박 두께 Ag 도금층

  • Kim, Ji Hwan (Department of Materials Science & Engineering, Seoul National University of Science and Technology) ;
  • Cho, Young Hak (Department of Mechanical System Design Engineering, Seoul National University of Science and Technology) ;
  • Lee, Jong-Hyun (Department of Materials Science & Engineering, Seoul National University of Science and Technology)
  • 김지환 (서울과학기술대학교 신소재공학과) ;
  • 조영학 (서울과학기술대학교 기계시스템디자인공학과) ;
  • 이종현 (서울과학기술대학교 신소재공학과)
  • Received : 2014.05.16
  • Accepted : 2014.06.27
  • Published : 2014.06.30

Abstract

To investigate the plating properties of a diethylene glycol-based Ag immersion plating solution containing citric acid, silver immersion plating was performed in a range from room temperature to $50^{\circ}C$ using sputtered Cu specimens. The used Cu specimens possessed surface structure with large numbers of pinholes which were created with over-acid etching. The Ag immersion plating performed at $40^{\circ}C$ exhibited that the pinholes and copper surface were completely filled with Ag just after 5 min mainly due to galvanic displacement reaction, indicating the best plating properties. Subsequently, the surface morphology of Ag-coated Cu became rougher as the plating time increased to 30 min because of the deposition of silver nanoparticles created by chemical reduction in the solution. The specimen that its overall surface was covered with silver indicated the start of oxidation at temperature higher than around $50^{\circ}C$ in air as compared with pure Cu, indicating enhanced anti-oxidation properties.

Citric acid 함유 diethylene glycol 용매 기반 용액의 치환 은도금 특성을 분석하기 위하여 Cu 박막 시편을 사용한 상온~$50^{\circ}C$ 온도 범위에서의 도금을 실시하였다. 사용된 Cu 박막 시편은 스퍼터링된 Cu를 과에칭하여 다수의 핀홀이 형성된 상태로 사용하였다. 도금을 $40^{\circ}C$에서 실시한 경우 갈바닉 치환 반응이 주로 발휘되면서 5분간의 도금 후에는 Cu 표면의 핀홀들이 완전히 Ag로 채워지고 Cu 표면도 전면적으로 Ag로 도금된 결과를 관찰할 수 있어 가장 우수한 Ag도금 특성을 얻을 수 있었다. 이후 도금 시간을 30분까지 증가시키게 되면 용액 내 환원 반응을 통한 입자들의 증착이 진행되면서 Ag 도금부의 요철이 점차 심해지는 현상이 관찰되었다. 전면적이 Ag로 도금된 Cu 시편의 대기 중 고온 내산화성을 평가한 결과 Ag가 도금되지 않은 Cu 시편에 비해 약 $50^{\circ}C$ 정도가 높은 온도에서 산화 거동이 관찰되어 향상된 내산화 특성을 확인할 수 있었다.

Keywords

References

  1. V. Kudryk, D. A. Corrigan and W. W. Liang, Precious Metals: Mining, Extraction, and Processing, AIME, New York (1987).
  2. E. Korczynski, "Interconnect", Solid State Technol., 41(3), 49 (1998).
  3. S. Hirsch and C. Rosenstein, "Immersion Plating", Met. Finish., 94(1A), 409 (1996).
  4. S. Shimizu and K. Ohkubo, "Immersion Silver Plating", Surf. Technol., 53(1), 34 (2002).
  5. Z. Wei, D. Tang and T. O'Keefe, "Nano-Structured Silver Coating on Copper Prepared in an Ethanol-Based Solution", China Particuology, 3(5), 271 (2005). https://doi.org/10.1016/S1672-2515(07)60200-0
  6. M. Arra, D. Shangguan, D. Xie, J. Sundelin, T. Lepisto and E. Ristolainen, "Study of Immersion Silver and Tin PCB Surfaces in Lead-Free Solder Applications, J. Electron Mater., 33(9), 977 (2004). https://doi.org/10.1007/s11664-004-0025-x
  7. J. -H. Lee, N. Kang and K. Lee, "Effects of Nano-Sized Diamond on Wettability and Interfacial Reaction for Immersion Sn Plating", J. Microelectron. Packag. Soc., 17(3), 59 (2010).
  8. H. Jiang, K. S. Moon, C. P. Wong, "Synthesis of Ag-Cu Alloy Nanoparticles for Lead-Free Interconnect Materials", Proc. International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces, Irvine, 173, IEEE, (2005).
  9. A. Muzikansky, P. Nanikashvili, J. Grinblat, D. Zitoun, "Ag Dewetting in Cu@Ag Monodisperse Core-Shell Nanoparticles", J. Phys. Chem. C, 117(6), 2093 (2013). https://doi.org/10.1021/jp311784a
  10. M. Grouchko, A. Kamyshny and S. Magdassi, "Formation of Air-Stable Copper-Silver Core-Shell Nanoparticles for Inkjet Printing", J. Mater. Chem., 19(19), 3057 (2009). https://doi.org/10.1039/b821327e
  11. I. Baskaran, T. S. N. Narayanan and A. Stephen, "Effect of Accelerators and Stabilizers on the Formation and Characteristics of Electroless Ni-P Deposits", Mater. Chem. Phys., 99(1), 117 (2006). https://doi.org/10.1016/j.matchemphys.2005.10.001
  12. D. A. Brevnov, T. S. Olson, G. P. Lopez and P. Atanassov, "Electroless Deposition of Silver by Galvanic Displacement on Aluminum Alloyed with Copper", J. Phys. Chem. B, 108(45), 17531 (2004). https://doi.org/10.1021/jp047096u
  13. C. Xu, G. Wu, Z. Liu, D. Wu, T. T. Meek and Q. Han, "Preparation of Copper Nanoparticles on Carbon Nanotubes by Electroless Plating Method", Mater. Res. Bull., 39(10), 1499 (2004). https://doi.org/10.1016/j.materresbull.2004.04.021
  14. L. N. Schoenberg, "The Use of Organic Additives to Stabilize and Enhance the Deposition Rate of Electroless Copper Plating", J. Electrochem. Soc., 119(11), 1491 (1972). https://doi.org/10.1149/1.2404029

Cited by

  1. A Method for Application of Ammonium-based Pretreatment Solution in Preparation of Copper Flakes Coated by Electroless Ag Plating vol.22, pp.4, 2015, https://doi.org/10.6117/kmeps.2015.22.4.057
  2. Antioxidation Behavior of Submicron-sized Cu Particles with Ag Coating vol.23, pp.3, 2016, https://doi.org/10.6117/kmeps.2016.23.3.051
  3. Effects of Synthetic Temperature and Amount of Oleylamine in Synthesis of Cu-Based Nanoparticles Using Heptyl Alcohol Solvent vol.21, pp.3, 2014, https://doi.org/10.6117/kmeps.2014.21.3.057
  4. Electrical Resistivity and Thermal Conductivity of Paste Containing Ag-coated Cu Flake Filler vol.21, pp.4, 2014, https://doi.org/10.6117/kmeps.2014.21.4.051
  5. Microstructural investigation of the oxidation behavior of Cu in Ag-coated Cu films using a focused ion beam transmission electron microscopy technique vol.55, pp.6S3, 2016, https://doi.org/10.7567/JJAP.55.06JG01