DOI QR코드

DOI QR Code

Parametrization of the Optical Constants of AlAsxSb1-x Alloys in the Range 0.74-6.0 eV

  • Kim, Tae Jung (Nano-Optical Property Laboratory and Department of Physics, Kyung Hee University) ;
  • Byun, Jun Seok (Nano-Optical Property Laboratory and Department of Physics, Kyung Hee University) ;
  • Barange, Nilesh (Nano-Optical Property Laboratory and Department of Physics, Kyung Hee University) ;
  • Park, Han Gyeol (Nano-Optical Property Laboratory and Department of Physics, Kyung Hee University) ;
  • Kang, Yu Ri (Nano-Optical Property Laboratory and Department of Physics, Kyung Hee University) ;
  • Park, Jae Chan (Nano-Optical Property Laboratory and Department of Physics, Kyung Hee University) ;
  • Kim, Young Dong (Nano-Optical Property Laboratory and Department of Physics, Kyung Hee University)
  • Received : 2014.07.08
  • Accepted : 2014.07.28
  • Published : 2014.08.25

Abstract

We report parameters that allow the dielectric functions ${\varepsilon}={\varepsilon}_1+i{\varepsilon}_2$ of $AlAs_xSb_{1-x}$ alloys to be calculated analytically over the entire composition range $0{\leq}x{\leq}1$ in the spectral energy range from 0.74 to 6.0 eV by using the dielectric function parametric model (DFPM). The ${\varepsilon}$ spectra were obtained previously by spectroscopic ellipsometry for x = 0, 0.119, 0.288, 0.681, 0.829, and 1. The ${\varepsilon}$ data are successfully reconstructed and parameterized by six polynomials in excellent agreement with the data. We can determine ${\varepsilon}$ as a continuous function of As composition and energy over the ranges given above, and ${\varepsilon}$ can be converted to complex refractive indices using a simple relationship. We expect these results to be useful for the design of optoelectronic devices and also for in situ monitoring of AlAsSb film growth.

Keywords

References

  1. H. Tsuchida, T. Simoyama, H. Ishikawa, T. Mozume, M. Nagase, and J. Kasai, "Cross-phase-modulation-based wavelength conversion using intersubband transition in InGaAs/ AlAs/AlAsSb coupled quantum wells," Opt. Lett. 32, 751- 753 (2007). https://doi.org/10.1364/OL.32.000751
  2. D. G. Revin, J. W. Cockburn, M. J. Steer, R. J. Airey, M. Hopkinson, A. B. Krysa, L. R. Wilson, and S. Menzel, "InGaAs/AlAsSb/InP quantum cascade lasers operating at wavelengths close to 3 ${\mu}m$," Appl. Phys. Lett. 90, 021108 (2007). https://doi.org/10.1063/1.2431035
  3. A. Perona, A. Garnache, L. Cerutti, A. Ducanchez, S. Mihindou, P. Grech, G. Boissier, and F. Genty, "AlAsSb/ GaSb doped distributed Bragg reflectors for electrically pumped VCSELs emitting around 2.3 ${\mu}m$," Semicond. Sci. Technol. 22, 1140-1144 (2007). https://doi.org/10.1088/0268-1242/22/10/010
  4. P. Ma, Y. Fedoryshyn, and H. Jackel, "Ultrafast all-optical switching based on cross modulation utilizing intersubband transitions in InGaAs/AlAs/AlAsSb coupled quantum wells with DFB grating waveguides," Opt. Express 19, 9461- 9474 (2011). https://doi.org/10.1364/OE.19.009461
  5. P. Martyniuk and A. Rogalski, "Theoretical modeling of InAsSb/AlAsSb barrier detectors for higher-operationtemperature conditions," Opt. Eng. 53, 017106 (2014). https://doi.org/10.1117/1.OE.53.1.017106
  6. I. C. Sandall, S. Xie, J. Xie, and C. H. Tan, "High temperature and wavelength dependence of avalanche gain of AlAsSb avalanche photodiodes," Opt. Lett. 36, 4287- 4289 (2011). https://doi.org/10.1364/OL.36.004287
  7. S. S. Jeong and J.-H. Ko, "Optical simulation study on the effect of diffusing substrate and pillow lenses on the outcoupling efficiency of organic light emitting diodes," J. Opt. Soc. Korea 17, 269-274 (2013). https://doi.org/10.3807/JOSK.2013.17.3.269
  8. M. P. Lumb, M. Gonzalez, I. Vurgaftman, J. R. Meyer, J. Abell, M. Yakes, R. Hoheisel, J. G. Tischler, P. P. Jenkins, P. N. Stavrinou, M. Fuhrer, N. J. Ekins-Daukes, and R. J. Walters, "Simulation of novel InAlAsSb solar cells," Proc. SPIE 8256, 82560S (2012).
  9. J. Kim, S. Jung, and I. Jeong, "Optical modeling for polarization-dependent optical power dissipation of thin-film organic solar cells at oblique incidence," J. Opt. Soc. Korea 16, 6-12 (2012). https://doi.org/10.3807/JOSK.2012.16.1.006
  10. T. Mozume, M. Tanaka, A. Yoshimi, and W. Susaki, "Optical functions of AlAsSb characterized by spectroscopic ellipsometry," Phys. Status Solidi A 205, 872-875 (2008). https://doi.org/10.1002/pssa.200777811
  11. J. Y. Kim, J. J. Yoon, T. J. Kim, Y. D. Kim, E. H. Lee, M. H. Bae, J. D. Song, W. J. Choi, C.-T. Liang, and Y.-C. Chang, "Optical properties of $AlAs_{x}Sb_{1-x}$ alloys determined by in situ ellipsometry," Appl. Phys. Lett. 103, 011901 (2013). https://doi.org/10.1063/1.4812834
  12. D. E. Aspnes and A. A. Studna, "Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV," Phys. Rev. B 27, 985-1009 (1983). https://doi.org/10.1103/PhysRevB.27.985
  13. K. H. Lyum, H. K. Yoon, S. J. Kim, S. H. An, and S. Y. Kim, "Study of ultra-small optical anisotropy profile of rubbed polyimide film by using transmission ellipsometry," J. Opt. Soc. Korea 18, 156-161 (2014). https://doi.org/10.3807/JOSK.2014.18.2.156
  14. C. M. Herzinger, H. Yao, P. G. Snyder, F. G. Celii, Y.-C. Kao, B. Johs, and J. A. Woollam, "Determination of AlAs optical constants by variable angle spectroscopic ellipsometry and a multisample analysis," J. Appl. Phys. 77, 4677-4687 (1995). https://doi.org/10.1063/1.359435
  15. Y. W. Jung, T. H. Ghong, J. S. Byun, Y. D. Kim, H. J. Kim, Y. C. Chang, S. H. Shin, and J. D. Song, "Dielectric response of AlSb from 0.7 to 5.0 eV determined by in situ ellipsometry," Appl. Phys. Lett. 94, 231913 (2009). https://doi.org/10.1063/1.3153127
  16. M. Cardona, "Modulation spectroscopy," in Solid State Physics, F. Seitz, D. Turnbull, and H. Ehrenreich, ed. (Academic, New York, 1969), Supplement, vol. 11.
  17. B. Johs, C. M. Herzinger, J. H. Dinan, A. Cornfeld, and J. D. Benson, "Development of a parametric optical constant model for $Hg_{1-x}Cd_{x}Te$ for control of composition by spectroscopic ellipsometry during MBE growth," Thin Solid Films 313-314, 137-142 (1998). https://doi.org/10.1016/S0040-6090(97)00800-6
  18. C. M. Herzinger and B. D. Johs, "Dielectric function parametric model, and method of use," U.S. Patent 5,796,983 (1995).
  19. J. Y. Kim, T. J. Kim, S. H. Shin, J. D. Song, and Y. D. Kim, "Real-time monitoring of growth of AlSb on GaAs," unpublished.
  20. D. E. Aspnes, "Optical properties of thin films," Thin Solid Films 89, 249-262 (1982). https://doi.org/10.1016/0040-6090(82)90590-9