DOI QR코드

DOI QR Code

Photonic True-Time Delay for Phased-Array Antenna System using Dispersion Compensating Module and a Multiwavelength Fiber Laser

  • Jeon, Hyun-Bin (R&D Dept/Research Team, Digital Innovation Display Corp.) ;
  • Lee, Hojoon (Optical Communication Laboratory, Department of Information and Communication Engineering, Hoseo University)
  • Received : 2014.04.09
  • Accepted : 2014.06.09
  • Published : 2014.08.25

Abstract

An optical true-time delay beam-forming system using a tunable dispersion compensating module (DCM) for dense-wavelength division modulation (DWDM) and a multiwavelength fiber ring laser for a phased array antenna is proposed. The multiwavelength fiber ring laser has one output that includes four wavelengths; and four outputs that include only single-wavelength. The advantage of such a multiwavelength fiber ring laser is that it minimizes the number of devices in the phased array antenna system. The time delays according to wavelengths, which are assigned for each antenna element, are obtained from the tunable DCM. The tunable DCM based on a temperature adjustable Fabry-Perot etalon is used. As an experimental result, a DCM could be used to obtain the change of the beam angle by adjusting the dispersion value of the DCM at the fixed lasing wavelengths of the fiber ring laser in the proposed optical true-time delay.

Keywords

References

  1. R. Kohno, "Spatial and temporal communication theory using adaptive antenna array," IEEE Personal Commun. 5, 28-35 (1998). https://doi.org/10.1109/98.656157
  2. A. Meijerink, C. G. H. Roeloffzen, R. Meijerink, L. Zhuang, D. A. I. Marpaung, M. J. Bentum, M. Burla, J. Verpoorte, P. Jorna, A. Hulzinga, and W. Etten, "Novel ring resonator-based integrated photonic beamformer for broadband phased array receiver antennas-Part I: Design and performance analysis," J. Lightwave. Technol. 28, 3-18 (2010). https://doi.org/10.1109/JLT.2009.2029705
  3. M. E. Godinez, C. S. McDermitt, A. S. Hastings, M. G. Parent, and F. Bucholtz, "RF characterization of zero-biased photodiodes," J. Lightwave Technol. 26, 2829-3834 (2008).
  4. B. Vidal, T. Mengual, C. Ibanez-Lopez, and J. Marti, "Optical beamforming network based on fiber-optical delay lines and spatial light modulators for large antenna arrays," IEEE Photon. Technol. Lett. 18, 2590-2592 (2006). https://doi.org/10.1109/LPT.2006.887347
  5. D. J. Rabb, B. L. Anderson, W. D. Cowan, and O. B. Spahn, "Spherical Fourier cell and application for optical true time delay," J. Lightwave Technol. 27, 879-886 (2009). https://doi.org/10.1109/JLT.2008.927762
  6. Z. Shi, Y. Jiang, B. Howley, Y. Chen, F. Zhao, and R. T. Chen, "Continuously delay-time tunable-waveguide hologram module for X-band phased-array antenna," IEEE Photon. Technol. Lett. 15, 972-974 (2003). https://doi.org/10.1109/LPT.2003.813392
  7. W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, "The first demonstration of an optically steered microwave phased array antenna using true-time-delay," J. Lightwave Technol. 9, 1124-1131(1991). https://doi.org/10.1109/50.85809
  8. Y. Chen and R. T. Chen, "A fully packaged true time delay module for a K-band phased array antenna system demonstration," IEEE Photon. Technol. Lett. 14, 1175-1177 (2002). https://doi.org/10.1109/LPT.2002.1022009
  9. G. Grosskopf, R. Eggemann, S. Zinal, B. Kuhlow, G. Przyrembel, D. Rohde, A. Kortke, and H. Ehlers, "Photonic 60-GHz maximum directivity beamformer for smart antennas in mobile broad-band communications," IEEE Photon. Technol. Lett. 14, 1169-1171 (2002). https://doi.org/10.1109/LPT.2002.1022007
  10. A. P. Goutzoulis, D. K. Davies, and J. M. Zomp, "Hybrid electronic fiber optic wavelength-multiplexed system for true time-delay steering of phased array antennas," Opt. Eng. 31, 2312-2322 (1992). https://doi.org/10.1117/12.59945
  11. M. A. Piqueras, G. Grosskopf, B. Vidal, J. Herrera, J. M. Martinez, P. Sanchis, V. Polo, J. L. Corral, A. Marceaux, J. Galiere, J. Lopez, A. Enard, J.-L. Valard, O. Parillaud, E. Estebe, N. Vodjdani, M.-S. Choi, J. H. den Besten, F. M. Soares, M. K. Smit, and J. Marti, "Optically beamformed beam-switched adaptive antennas for fixed and mobile broad- band wireless access networks," IEEE Trans. Microwave Theory Tech. 54, 887-899 (2006). https://doi.org/10.1109/TMTT.2005.863049
  12. D. Dolfi, P. Joffre, J. Antoine, J. P. Huignard, D. Philipper, and P. Granger, "Experimental demonstration of a phased-array antenna optically controlled with phase and time delays," Appl. Opt. 35, 5293-5300 (1996). https://doi.org/10.1364/AO.35.005293
  13. J. Shin, B. Lee, and B. Kim, "Optical true time-delay feeder for X-band phased array antennas composed of 2 X 2 optical MEMS switches and fiber delay lines," IEEE Photon. Technol. Lett. 16, 1364-1366 (2004). https://doi.org/10.1109/LPT.2004.826083
  14. B. Jung, J. Shin, and B. Kim, "Optical true time-delay for two-dimensional X-band phased array antennas," IEEE Photon. Technol. Lett. 19, 877-879 (2007). https://doi.org/10.1109/LPT.2007.897530
  15. N. Madamopoulos and N. A. Riza, "Demonstration of an all-digital7-bit 33-channel photonic delay line for phasedarray radars," Appl. Opt. 39, 4168-4181 (2000). https://doi.org/10.1364/AO.39.004168
  16. R. Soref, "Optical dispersion technique for time delay beam steering," Appl. Opt. 31, 7395-7397 (1992). https://doi.org/10.1364/AO.31.007395
  17. Y. Jiang, B. Howley, Z. Shi, Q. Zhou, R. T. Chen, M. Y. Chen, G. Brost, and C. Lee, "Dispersion-enhanced photonic crystal fiber array for a true time-delay structured X-band phased array antenna," IEEE Photon. Technol. Lett. 17, 187-189 (2005). https://doi.org/10.1109/LPT.2004.838623
  18. R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, and M. G. Parent, "Fiber optic prism true time delay antenna feed," IEEE Photon. Technol. Lett. 5, 1347-1349 (1993). https://doi.org/10.1109/68.250065
  19. M. Y. Frankel, P. J. Matthews, and R. D. Esman, "Twodimensional fiber-optic control of a true time-steered array transmitter," IEEE Trans. Microw. Theory Tech. 44, 2696- 2702 (1996). https://doi.org/10.1109/22.554632
  20. R. A. Soref, "Fiber grating prism for true time delay beamsteering," Fiber Integr. Opt. 15, 325-333 (1996). https://doi.org/10.1080/01468039608202279
  21. S. Lee, Y. Oh, and S. Shin, "Photonic microwave true-time delay based on a tapered fiber Bragg grating with resistive coating," IEEE Photon. Technol. Lett. 16, 2335-2337 (2004). https://doi.org/10.1109/LPT.2004.833874
  22. H. Zmuda, R. A. Soref, P. Payson, S. Johns, and E. N. Toughlian, "Photonic beamformer for phased array antennas using a fiber grating prism," IEEE Photon. Technol. Lett. 9, 241-243 (1997). https://doi.org/10.1109/68.553105
  23. J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, "Dispersion induced bandwidth limitation of variable true time delay lines based on linearly chirped fibre gratings," Electron. Lett. 34, 209-211 (1998). https://doi.org/10.1049/el:19980164
  24. B. Ortega, J. L. Cruz, J. Capmany, M. V. Andrés, and D. Pastor, "Variable delay line for phased-array antenna based on a chirped fiber grating," IEEE Trans. Microwave Theory Tech. 48, 1352-1360 (2000). https://doi.org/10.1109/22.859480
  25. D. B. Hunter, M. E. Parker, and J. L. Dexter, "Demonstration of a continuously variable true-time delay beamformer using a multichannel chirped fiber grating," IEEE Trans. Microwave Theory Tech. 54, 861-867 (2006). https://doi.org/10.1109/TMTT.2005.863056
  26. M. Ebrahim, M. Pasandi, M. M. Sisto, S. Doucet, Y. Kim, L. A. Rusch, S. LaRochelle, "Low-distortion optical nullsteering beamformer for radio-over-fiber OFDM Systems," J. Lightwave Technol. 27, 5173-5181 (2009). https://doi.org/10.1109/JLT.2009.2027818
  27. J. Yao, J. Yang, and Y. Liu, "Continuous true-time-delay beamforming employing a multiwavelength tunable fiber laser source," IEEE Photon. Technol. Lett. 14, 687-689 (2002). https://doi.org/10.1109/68.998726
  28. L. M. Lunardi, D. J. Moss, S. Chandrasekhar, L. L. Buhl, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, "Tunable dispersion compensation at 40-Gb/s using a multicavity etalon all-pass filter with NRZ, RZ, and CS-RZ modulation," J. Lightwave Technol. 20, 2136-2144 (2002). https://doi.org/10.1109/JLT.2002.806768
  29. K. Lee, S. D. Lim, C. H. Kim, J. H. Lee, Y. G. Han, and S. B. Lee, "Noise reduction in multiwavelength SOA-based ring laser by coupled dual cavities for WDM applications," J. Lightwave Technol. 28, 739-745 (2010). https://doi.org/10.1109/JLT.2009.2037928
  30. H. Lee, "Multiwavelength erbium-doped fiber ring laser with adjustable line power using variable attenuators and DWDM," Korean J. Opt. Photon. (Hankook Kwanghak Hoeji) 25, 146-149 (2014). https://doi.org/10.3807/KJOP.2014.25.3.146

Cited by

  1. Accurate and fast fiber transfer delay measurement based on phase discrimination and frequency measurement vol.87, pp.9, 2016, https://doi.org/10.1063/1.4961983
  2. Experimental demonstration of a multi-target detection technique using an X-band optically steered phased array radar vol.24, pp.13, 2016, https://doi.org/10.1364/OE.24.014438
  3. Phased-array beam steering using optical true time delay technique vol.350, 2015, https://doi.org/10.1016/j.optcom.2015.03.066
  4. Photonic true time delay beamforming technique with ultra-fast beam scanning vol.25, pp.13, 2017, https://doi.org/10.1364/OE.25.014524