References
- Lydakis, C., Lip, G. Y. H., Beevers, M. and Beevers, D. G. : Diet, lifestyle and blood pressure. Coronary Health Care 1, 130 (1997). https://doi.org/10.1016/S1362-3265(97)80003-X
- Marn, C., Yubero-Serrano, E. M., Lpez-Miranda, J. and Prez- Jimnez, F. : Endothelial aging associated with oxidative stress can be modulated by a healthy mediterranean diet. Int. J. Mol. Sci. 14, 8869 (2013). https://doi.org/10.3390/ijms14058869
- Favero, G., Paganelli, C., Buffoli, B., Rodella, L. F. and Rezzani, R. : Endothelium and its alterations in cardiovascular diseases: life style intervention. Biomed. Res. Int. in press (2014).
- Zhang, Y., Talalay, P., Cho, C. G. and Posner, G. H. : A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc. Natl. Acad. Sci. USA 89, 2399 (1992). https://doi.org/10.1073/pnas.89.6.2399
- Zhao, H. D., Zhang, F., Shen, G., Li, Y. B., Li, Y. H., Jing, H. R., Ma, L. F., Yao, J. H. and Tian, X. F. : Sulforaphane protects liver injury induced by intestinal ischemia reperfusion through Nrf2-ARE pathway. World J. Gastroenterol. 16, 3002 (2010). https://doi.org/10.3748/wjg.v16.i24.3002
- Piao, C. S., Gao, S., Lee, G. H., Kim, D. S., Park, B. H., Chae, S. W., Chae, H. J. and Kim, S. H. : Sulforaphane protects ischemic injury of hearts through antioxidant pathway and mitochondrial K (ATP) channels. Pharmacol. Res. 61, 342 (2010). https://doi.org/10.1016/j.phrs.2009.11.009
- Zhao, J., Kobori, N., Aronowski, J. and Dash, P. K. : Sulforaphane reduces infarct volume following focal cerebral ischemia in rodents. Neurosci. Lett. 393, 108 (2006). https://doi.org/10.1016/j.neulet.2005.09.065
- Alp, H., Aytekin, I., Hatipoglu, N. K., Alp, A. and Ogun, M. : Effects of sulforophane and curcumin on oxidative stress created by acute malathion toxicity in rats. Eur. Rev. Med. Pharmacol. Sci. 16, 144 (2012).
- Hong, Y., Yan, W., Chen, S., Sun, C. R. and Zhang, J. M. : The role of Nrf2 signaling in the regulation of antioxidants and detoxifying enzymes after traumatic brain injury in rats and mice. Acta pharmacologica Sinica 31, 1421 (2010). https://doi.org/10.1038/aps.2010.101
- Innamorato, N. G., Rojo, A. I., Garcia-Yague, A. J., Yamamoto, M., de Ceballos, M. L. and Cuadrado, A. : The transcription factor Nrf2 is a therapeutic target against brain inflammation. J. Immunol. 181, 680 (2008). https://doi.org/10.4049/jimmunol.181.1.680
- Vomhof-Dekrey, E. E. and Picklo, M. J., Sr. : The Nrf2- antioxidant response element pathway: a target for regulating energy metabolism. J. Nutr. Biochem. 23, 1201 (2012). https://doi.org/10.1016/j.jnutbio.2012.03.005
- Somlyo, A. P. and Somlyo, A. V. : Signal transduction and regulation in smooth muscle. Nature 372, 231 (1994). https://doi.org/10.1038/372231a0
- Somlyo, A. P. and Somlyo, A. V. : From pharmacomechanical coupling to G-proteins and myosin phosphatase. Acta. Physiol. Scand. 164, 437 (1998). https://doi.org/10.1046/j.1365-201X.1998.00454.x
- Uehata, M., Ishizaki, T., Satoh, H., Ono, T., Kawahara, T., Morishita, T., Tamakawa, H., Yamagami, K., Inui, J., Maekawa, M. and Narumiya, S. : Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389, 990 (1997). https://doi.org/10.1038/40187
-
Sakurada, S., Takuwa, N., Sugimoto, N., Wang, Y., Seto, M., Sasaki, Y. and Takuwa, Y. :
$Ca^{2+}$ -dependent activation of Rho and Rho-kinase in membrane depolarization-induced and receptor stimulation-induced vascular smooth muscle contraction. Circ. Res. 93, 548 (2003). https://doi.org/10.1161/01.RES.0000090998.08629.60 - Kitazawa, T., Masuo, M. and Somlyo, A. P. : Protein-mediated inhibition of myosin light-chain phosphatase in vascular smooth muscle. Proc. Natl. Acad. Sci. USA 88, 9307 (1991). https://doi.org/10.1073/pnas.88.20.9307
- Gohla, A., Schultz, G. and Offermanns, S. : Roles for G(12)/ G(13) in agonist-induced vascular smooth muscle cell contraction. Circ. Res. 87, 221 (2000). https://doi.org/10.1161/01.RES.87.3.221
- Leung, T., Manser, E., Tan, L. and Lim, L. : A novel serine/ threonine kinase binding the Ras-related RhoA GTPase which translocates the kinase to peripheral membranes. J. Biol. Chem. 270, 29051 (1995). https://doi.org/10.1074/jbc.270.49.29051
- Matsui, T., Amano, M., Yamamoto, T., Chihara, K., Nakafuku, M., Ito, M., Nakano, T., Okawa, K., Iwamatsu, A. and Kaibuchi, K. : Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho. EMBO. J. 15, 2208 (1996).
- Wier, W. G. and Morgan, K. G. : Alpha1-adrenergic signaling mechanisms in contraction of resistance arteries. Rev. Physiol. Biochem. Pharmacol. 150, 91 (2003).
- Jeon, S. B., Jin, F., Kim, J. I., Kim, S. H., Suk, K., Chae, S. C., Jun, J. E., Park, W. H. and Kim, I. K. : A role for Rho kinase in vascular contraction evoked by sodium fluoride. Biochem. Biophys. Res. Commun. 343, 27 (2006). https://doi.org/10.1016/j.bbrc.2006.02.120
-
Wilson, D. P., Susnjar. M., Kiss, E., Sutherland, C. and Walsh, M. P. : Thromboxane A2-induced contraction of rat caudal arterial smooth muscle involves activation of
$Ca^{2+}$ entry and$Ca^{2+}$ sensitization: Rho-associated kinase-mediated phosphorylation of MYPT1 at Thr-855, but not Thr-697. Biochem. J. 389, 763 (2005). https://doi.org/10.1042/BJ20050237 - Bhattacharya, B. and Roberts, R. E. : Enhancement of alpha2- adrenoceptor-mediated vasoconstriction by the thromboxanemimetic U46619 in the porcine isolated ear artery: role of the ERK-MAP kinase signal transduction cascade. Br. J. Pharmacol. 139, 156 (2003). https://doi.org/10.1038/sj.bjp.0705208
- Eylen, D. V., Oey, I., Hendrickx, M. and Loey, A. V. : Kinetics of the stability of broccoli (Brassica oleracea cv. italica) myrosinase and isothiocyanates in broccoli juice during pressure/ temperature treatments. J. Agric. Food Chem. 55, 2163 (2007). https://doi.org/10.1021/jf062630b