수종 용제와 투과 촉진제를 이용한 로바스타틴의 용해성 및 피부 투과 증진

Enhanced Solubility and In vitro Skin Permeation of Lovastatin Using Some Vehicles and Penetration Enhancers

  • 이나영 (동덕여자대학교 약학대학) ;
  • 전인구 (동덕여자대학교 약학대학)
  • Lee, Na Young (College of Pharmacy, Dongduk Women's University) ;
  • Chun, In Koo (College of Pharmacy, Dongduk Women's University)
  • 투고 : 2014.04.25
  • 심사 : 2014.05.20
  • 발행 : 2014.06.30

초록

To enhance the in vitro permeation of lovastatin through excised hairless mouse and human cadaver skins, solubility was determined in various hydrophilic and lipophilic vehicles, and the effects of vehicles and penetration enhancers on the skin permeation from solution formulations were investigated. Solubility of lovastatin was highest in N-methyl-2-pyrrolidone (NMP) ($278.2{\pm}10.1$ mg/ml) and dimethyl sulfoxide (DMSO) ($162.2{\pm}9.7$ mg/ml). Among different pure vehicles used, NMP, DMSO, propylene glycol and isopropyl myristate provided some drug permeation ($6.9{\pm}1.1$, $5.9{\pm}1.6$, $3.0{\pm}0.5$ and $2.2{\pm}0.3{\mu}g/cm^2$ at 24 hr, respectively) through hairless mouse skin. The addition of oleic acid, linoleic acid and oleyl alcohol to DMSO showed the maximum permeation at around 5 v/v%, however, capric acid and caprylic acid had no enhancing effect. The increase of enhancer concentrations showed bell-shaped permeation rate, suggesting the presence of optimal concentration in lovastatin penetration. Increasing donor concentration from 10 mg/ml to 80 mg/ml in DMSO and a cosolvent of DMSO, NMP and DGME (3 : 3 : 4 v/v) did not show significant dose dependent permeation in both hairless mouse and human cadaver skins. The maximum lovastatin flux through human cadaver skin was found to be $0.87{\pm}0.46{\mu}g/cm^2$/hr with 5 v/v% linoleic acid and donor dose of 4 mg/0.64 $cm^2$ in the cosolvent. These results suggest that transdermal delivery of lovastatin would be feasible by establishing the optimal concentrations of donor dose and unsaturated fatty acids in appropriate vehicles.

키워드

참고문헌

  1. Alverts, A. W. : Discovery, biochemistry and biology of lovastatin. Am. J. Cardiol., 62, J10 (1998).
  2. Manzoni, M. and Rollini, M. : Biosynthesis and biotechnological production of statins by filamentous fungi and application of these cholesterol-lowering drugs. Appl. Microbiol. Biotechnol. 58, 555 (2002). https://doi.org/10.1007/s00253-002-0932-9
  3. Corsini, A., Bellosta, S., Baetta, R., Fumagalli, R., Paoletti, R. and Bernini, F. : New insights into the pharmacodynamic and pharmacokinetic properties of statins. Pharmacol. Ther. 84, 413 (1999). https://doi.org/10.1016/S0163-7258(99)00045-5
  4. Shitara, Y. and Sugiyama, Y. : Pharmacokinetic and pharmacodynamic alterations of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors: drug-drug interactions and interindividual differences in transporter and metabolic enzyme functions. Pharmacol. Ther. 112, 71 (2006). https://doi.org/10.1016/j.pharmthera.2006.03.003
  5. Chuengsamarn, S., Rattanamongkoulgul, S., Suwanwalaikorn, S., Wattanasirichaigoon, S. and Kaufman, L. : Effects of statins vs. non-statin lipid-lowering therapy on bone formation and bone mineral density biomarkers in patients with hyperlipidemia. Bone 46, 1011 (2010). https://doi.org/10.1016/j.bone.2009.12.023
  6. Xia, Z., Tan, M. M., Wei-Lynn Wong, W., Dimitroulakos, J., Minden, M. D. and Penn, L. Z. : Blocking protein prenylation is essential for lovastatin-induced apoptosis of human acute myeloid leukemia cells. Leukemia 15, 1398 (2001). https://doi.org/10.1038/sj.leu.2402196
  7. Jacobs, R. J., Voorneveld, P. W., Kodach, L. L. and Hardwick, J. C. H. : Cholesterol metabolism and colorectal cancers. Current Opinion Pharmacol. 12, 690 (2012). https://doi.org/10.1016/j.coph.2012.07.010
  8. Gauthaman, K., Fong, C. Y. and Bongso, A. : Statins, stem cells, and cancer, J. Cell. Biochem. 106, 975 (2009). https://doi.org/10.1002/jcb.22092
  9. Silva, M. A., Swanson, A. C., Gandhi, P. J. and Tataronis, G. R. : Statin-related adverse events: A meta-analysis. Clin. Ther. 28, 26 (2006). https://doi.org/10.1016/j.clinthera.2006.01.005
  10. Wortmann, R. L., Tipping, R. W., Levine, J. G. and Melin, J. M. : Frequency of myopathy in patients receiving lovastatin. Am. J. Cardiol. 95, 983 (2005). https://doi.org/10.1016/j.amjcard.2004.12.042
  11. Bellosta, S., Paoletti, R. and Corsini, A. : Safety of statins: focus on clinical pharmacokinetics and drug interactions. Circulation 109, III50 (2004). https://doi.org/10.1161/01.CIR.0000116208.41269.75
  12. Patel, R. P. and Patel, M. M. : Solid-state characterization and dissolution properties of lovastatin hydroxypropyl-${\beta}$-cyclodextrin inclusion complex. Pharm. Technol. 31, 72 (2007).
  13. Suresh, G., Manjunath, K., Venkateswarlu, V. and Satyanarayana, V. : Preparation, characterization, and in vitro and in vivo evaluation of lovastatin solid lipid nanoparticles. AAPS Pharm. Sci. Technol. 8, E1 (2007).
  14. Mehramizi, A., Asgari Monfared, E., Pourfarzib, M., Bayati, Kh., Dorkoosh, F. A. and Rafiee-Tehrani, M. : Influence of ${\beta}$-cyclodextrin complexation on lovastatin release from osmotic pump tablets (OPT). DARU 15, 71 (2007).
  15. Patel, M., Tekade, A., Gattani, S. and Surana, S. : Solubility enhancement of lovastatin by modified locust bean gum using solid dispersion techniques, AAPS Pharm. Sci. Technol. 9, 1262 (2008). https://doi.org/10.1208/s12249-008-9171-4
  16. Wu, C., Wang, Z., Zhi, Z., Jiang, T., Zhang, J. and Wang, S. : Development of biodegradable porous starch foam for improving oral delivery of poorly water soluble drugs. Int. J. Pharm. 403, 162 (2011). https://doi.org/10.1016/j.ijpharm.2010.09.040
  17. Chen, C. C., Tsai, T. H., Huang, Z. R. and Fang, J. Y. : Effects of lipophilic emulsifiers on the oral administration of lovastatin from nanostructured lipid carriers: physicochemical characterization and pharmacokinetics. Eur. J. Pharm. Biopharm. 74, 474 (2010). https://doi.org/10.1016/j.ejpb.2009.12.008
  18. Chun, I. K. : Dissolution and duodenal permeation characteristics of lovastatin from bile salt solid dispersions. J. Kor. Pharm. Sci. 39, 97 (2009). https://doi.org/10.4333/KPS.2009.39.2.097
  19. Shinde, A. J., Paithane, M. B. and More, H. N. : Development and in vitro evaluation of transdermal patches of lovastatin as a antilipidemic drug. Int. Res. J. Pharm. 1, 113 (2010).
  20. Zawar, L. R., Bhandari, G. S. and Bari, S. B. : Formulation and evaluation of transdermal film of lovastatin. Res. J. Pharm. Biol. Chem. Sci. 2, 575 (2011).
  21. Sharma, S., Sharma, A., Arora, S. and Gupta, A. : Preparation, characterization, in vitro & in vivo evaluation of elastic liposomal formulation of lovastatin. J. Pharm. Res. 4, 4074 (2011).
  22. Sarvaiya, J. I., Kapse, G. K. and Tank, C. J. : Iontophoresis of micellar composition of lovastatin: study of affecting factors and in vitro permeation. J. Pharm. Res. 7, 327 (2013). https://doi.org/10.1016/j.jopr.2013.04.032
  23. Kumar, R. and Philip, A. : Modified transdermal technologies: breaking the barriers of drug permeation via the skin. Trop. J. Pharm. Res. 6, 633 (2007).
  24. Gwak, H. S. and Chun, I. K. : Effect of vehicles and penetration enhancers on the in vitro percutaneous absorption of tenoxicam through hairless mouse skin. Int. J. Pharm. 236, 57 (2002). https://doi.org/10.1016/S0378-5173(02)00009-1
  25. Lee, J. H. and Chun, I. K. : Effects of various vehicles and fatty acids on the skin permeation of lornoxicam. J. Pharm. Invest. 42, 235 (2012). https://doi.org/10.1007/s40005-012-0035-2
  26. Alvarez-Lueje, A., Pastine, J., Squella, J. A. and Nunez-Vergara, L. J. : Assessment of the hydrolytic degradation of lovastatin by HPLC. J. Chil. Chem. Soc. 50, 639 (2005).
  27. Yang, D. J. and Hwang, L. S. : Study on the conversion of three natural statins from lactone forms to their corresponding hydroxy acid forms and their determination in Pu-Erh tea. J. Chromatogr. A 1119, 277 (2006). https://doi.org/10.1016/j.chroma.2005.12.031
  28. Huang, Z., Xu, Y., Li, Y. and Wang, Y. : Conversion investigation for lovastatin and its derivatives by HPLC. J. Chromatogr. Sci. 48, 631 (2010). https://doi.org/10.1093/chromsci/48.8.631
  29. Lovastatin Tablets, The United States Pharmacopeia, Volume II, The United Book Press, Baltimore, pp. 2815-2817 (2009).
  30. Kligman, A. M. : Topical pharmacology and toxicology of dimethyl sulfoxide. J. Am. Med. Assoc. 193, 796 (1965). https://doi.org/10.1001/jama.1965.03090100042010
  31. Barry, B. W. : Dermatological Formulations: Percutaneous Absorption, Marcel Dekker, New York, pp. 49-94 (1983).
  32. Serajuddin, A. T., Ranadive, S. A. and Mahoney, E. M. : Relative lipophilicities, solubilities, and structure-pharmacological considerations of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors pravastatin, lovastatin, mevastatin, and simvastatin. J. Pharm. Sci. 80, 830 (1991). https://doi.org/10.1002/jps.2600800905
  33. Williams, A. C. and Barry, B. W. : Penetration enhancers. Adv. Drug Del. Rev. 56, 603 (2004). https://doi.org/10.1016/j.addr.2003.10.025
  34. Ganem-Quintanar, A., Lafforgue, C., Falson-Rieg, F. and Buri, P. : Evaluation of the transepidermal permeation of diethylene glycol monoethyl ether and skin water loss. Int. J. Pharm. 147, 165 (1997). https://doi.org/10.1016/S0378-5173(96)04809-0
  35. Mura, P., Faucci, M. T., Bramanti, G. and Corti, P. : Evaluation of transcutol as a clonazepam transdermal permeation enhancer from hydrophilic gel formulations. Eur. J. Pharm. Sci. 9, 365 (2000). https://doi.org/10.1016/S0928-0987(99)00075-5
  36. Hoelgaard, A., Mollgaard, B. and Baker, E. : Vehicle effect on topical drug delivery. IV. effect of N-methylpyrrolidone and polar lipids on percutaneous drug transport, Int. J. Pharm. 43, 233 (1988). https://doi.org/10.1016/0378-5173(88)90279-7
  37. Golden, G. M., McKie, J. E. and Potts, R. O. : Role of stratum corneum lipid fluidity in transdermal drug flux. J. Pharm. Sci. 76, 25 (1987). https://doi.org/10.1002/jps.2600760108
  38. Komata, Y., Kaneko, A. and Fujie, T. : In vitro percutaneous absorption of thiamine disulfide through rat skin from a mixture of propylene glycol and fatty acid or its analog. Chem. Pharm. Bull. 40, 2173 (1992). https://doi.org/10.1248/cpb.40.2173
  39. Santoyo, S. and Ygartua P. : Effect of skin pretreatment with fatty acids on percutaneous absorption and skin retention of piroxicam after its topical application. Eur. J. Pharm. Biopharm. 50, 245 (2000). https://doi.org/10.1016/S0939-6411(00)00097-7
  40. Andega, S., Kanikkannan, N. and Singh, M. : Comparison of the effect of fatty alcohols on the permeation of melatonin between porcine and human skin. J. Controled Release 77, 17 (2001). https://doi.org/10.1016/S0168-3659(01)00439-4
  41. Oertel, R. P. : Protein conformational changes induced in human stratum corneum by organic sulfoxides: an infrared spectroscopic investigation. Biopolymers 16, 2329 (1977). https://doi.org/10.1002/bip.1977.360161017
  42. Roy, S. D., Hou, S.-Y. E., Witham, S. L. and Flynn, G. L. : Transdermal delivery of narcotic analgesics: comparative metabolism and permeability of human cadaver skin and hairless mouse skin. J. Pharm. Sci. 83, 1723 (1994). https://doi.org/10.1002/jps.2600831215
  43. Ghosh, B., Reddy, L. H., Kulkarni, R. V. and Khanam, J. : Comparison of skin permeability of drugs in mice and human cadaver skin. Indian J. Exp. Biol. 38, 42 (2000).
  44. Godin, B. and Touitou, E. : Transdermal skin delivery: predictions for humans from in vivo, ex vivo and animal models. Adv. Drug Del. Rev. 59, 1152 (2007). https://doi.org/10.1016/j.addr.2007.07.004