DOI QR코드

DOI QR Code

샤페론 단백질 동시 발현기술을 이용한 수용성 CMP-Neu5Ac Synthetase 생산

Soluble Production of CMP-Neu5Ac Synthetase by Co-expression of Chaperone Proteins in Escherichia coli

  • 최화영 (충북대학교 식품생명공학과) ;
  • 이령 (충북대학교 식품생명공학과) ;
  • 조승기 (충북대학교 식품생명공학과) ;
  • 이원흥 (전남대학교 농업생명과학대학 바이오에너지공학과) ;
  • 서진호 (서울대학교 식품생명공학과) ;
  • 한남수 (충북대학교 식품생명공학과)
  • Choi, Hwa Young (Department of Food Science and Technology, BK21 Education and Research Center for Advanced Bio-Agriculture Technology, Chungbuk National University) ;
  • Li, Ling (Department of Food Science and Technology, BK21 Education and Research Center for Advanced Bio-Agriculture Technology, Chungbuk National University) ;
  • Cho, Seung Kee (Department of Food Science and Technology, BK21 Education and Research Center for Advanced Bio-Agriculture Technology, Chungbuk National University) ;
  • Lee, Won-Heong (Department of Bioenergy Science and Technology, Chonman National University) ;
  • Seo, Jin-Ho (Department of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University) ;
  • Han, Nam Soo (Department of Food Science and Technology, BK21 Education and Research Center for Advanced Bio-Agriculture Technology, Chungbuk National University)
  • 투고 : 2014.03.08
  • 심사 : 2014.04.16
  • 발행 : 2014.06.28

초록

CMP-Neu5Ac synthetase는 sialyated 된 glycoconjugates의 전구체로 사용되는 CMP-Neu5Ac를 합성하는데 관여하는 주요 효소이다. Escherichia coli K1에서 유래한 CMP-Neu5Ac synthetase 유전자 (neuA)는 평소 E. coli BL21(DE3)에서 비수용성으로 생성되는데, 이를 수용성 단백질로 생산하고자 여러 가지 샤페론 단백질 동시 발현기술을 이용하였다. 이를 위해, GroEL-ES와 DnaK-DnaJ-GrpE를 암호화하는 pG-KJE8 plasmid와 neuA를 동시 형질전환 시켰고 0.01 mM IPTG와 0.005 mg/ml의 L-arabinose로 유도하여 $20^{\circ}C$에서 발현시켰다. 그 결과, E. coli에서의 수용성 CMP-Neu5Ac Synthetase 생산이 현저하게 증가하였다.

CMP-Neu5Ac synthetase is a key enzyme for the synthesis of CMP-Neu5Ac, which is an essential precursor of sialylated glycoconjugates. For the soluble expression of the CMP-Neu5Ac synthetase gene (neuA) from Escherichia coli K1, various heat shock proteins were co-expressed in E. coli BL21 (DE3) Star. In order to do this, a pG-KJE8 plasmid, encoding genes for GroEL-ES and DnaK-DnaJ-GrpE, was co-transformed with neuA and was expressed at $20^{\circ}C$ by the addition of 0.01 mM IPTG and 0.005 mg/ml L-arabinose. The co-expression of a variety of heat shock proteins resulted in the remarkably improved production of soluble CMP-Neu5Ac synthetase in E. coli.

키워드

참고문헌

  1. Boehm G, Stahl B. 2007. Oligosaccharides from milk. J. Nutr. 137: 847-849.
  2. Gilbert M, Cunningham AM, Watson DC, Martin A, Richards JC, Wakarchuk WW. 1997. Characterization of a recombinant Neisseria meningitidis alpha-2,3-sialyltransferase and its acceptor specificity. Eur. J. Biochem. 249: 187-194. https://doi.org/10.1111/j.1432-1033.1997.t01-1-00187.x
  3. Lee WH, Shin SY, Kim MD, Han NS, Seo JH. 2012. Modulation of guanosine nucleotides biosynthetic pathways enhanced GDP-L-fucose production in recombinant Escherichia coli. Appl. Microbiol. Biotechnol. 93: 2327-2334. https://doi.org/10.1007/s00253-011-3776-3
  4. Mogk A, Tomoyasu T, Goloubinoff P, Rüdiger S, Roder D, Langen H, et al. 1999. Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB. Embo. J. 18: 6934-6949. https://doi.org/10.1093/emboj/18.24.6934
  5. Nakano T, Sugawara M, Kawakami H. 2001. Sialic acid in human milk: composition and functions. Acta Paediatr Taiwan. 42: 11-17.
  6. Preston A, Mandrell RE, Gibson BW, Apicella MA. 1996. The lipooligosaccharides of pathogenic gram-negative bacteria. Crit. Rev. Microbiol. 22: 139-180. https://doi.org/10.3109/10408419609106458
  7. Ringenberg M, Lichtensteiger C, Vimr E. 2001. Redirection of sialic acid metabolism in genetically engineered Escherichia coli. Glycobiology. 11: 533-539. https://doi.org/10.1093/glycob/11.7.533
  8. Schein CH. 1989. Production of Soluble Recombinant Proteins in Bacteria. Nature. 7: 1141-1148.
  9. Sørensen HP, Mortensen KK. 2005. Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microb. Cell Fact. 4: 1. https://doi.org/10.1186/1475-2859-4-1
  10. Warrick JM, Chan HY, Gray-Board GL. 1999. Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat. Genet. 23: 425-428. https://doi.org/10.1038/70532
  11. Weickert MJ, Doherty DH, Best EA, Olins PO. 1996. Optimization of heterologous protein production in Escherichia coli. Curr. Opin. Biotechnol. 7: 494-499. https://doi.org/10.1016/S0958-1669(96)80051-6