DOI QR코드

DOI QR Code

Miniaturization of Inductive Resonator for Implementation of Wireless Power Transfer Technology Using Resonant Inductive Coupling

자기 공진 결합 방식을 이용한 무선 전력 전송기술 구현을 위한 자기 공진기 소형화 설계

  • Cho, Young Seek (Center for Advanced Electric Applications, Wonkwang University) ;
  • Park, Ji Hye (Department of Information and Communication Engineering, Wonkwang University) ;
  • Nam, Yun Seo (Department of Information and Communication Engineering, Wonkwang University) ;
  • Choi, Seyeong (Department of Information and Communication Engineering, Wonkwang University)
  • Received : 2014.07.01
  • Accepted : 2014.07.28
  • Published : 2014.08.31

Abstract

A novel inductive resonator for the implementation of wireless power transfer using resonant inductive coupling is presented. The proposed inductive resonator is much smaller than the helix shape resonator suggested by MIT research team but operates the same resonant frequency with comparable wireless power transfer efficiency. The proposed inductive resonator is a spiral shape ($1,696cm^3$), which is 97 % smaller than the helix shape ($59,376cm^3$). The wireless power transfer efficiency is less than 9 % when compared to the helix shape resonator. With the reduce size and comparable efficiency, this novel inductive resonator can be used in practical application of wireless power transfer.

자기 공진 결합 (resonant inductive coupling) 현상을 이용한 무선 전력 전송 기술을 구현하기 위하여 새로운 구조의 자기 공진기를 제시한다. MIT 연구팀이 제안한 헬릭스 (helix) 모양의 자기 공진기의 크기를 줄이고, 공진 주파수 10 MHz를 유지하며, 무선 전력 전송 효율이 크게 열화 되지 않도록 설계한다. 새로운 구조의 자기 공진기는 스파이럴 (spiral) 모양으로써 헬릭스 모양 대비 소형화를 달성하였다. 스파이럴 모양 ($1,696cm^3$)의 자기 공진기는 헬릭스 모양 ($59,376cm^3$) 대비 97% 소형화를 이룩하였고, 무선 전력 전송 효율은 기존 기술 (2 m 거리에서 40 % 전송 효율) 대비 9% 이하로 차이를 줄임으로써 무선 전력 전송 기술의 실용화에 기여할 수 있게 되었다.

Keywords

References

  1. N. Tesla, Apparatus for transmitting electrical engergy, US patent number 1,119,732, Patent and Trademark Office, Washington D.C., 1914.
  2. W. C. Brown and E. E. Eves, "Beamed microwave power transmission and its application to space," IEEE Transactions on Microwave Theory and Tech. , vol. 40, no. 6, June 1992.
  3. J. O. McSpadden and J. C. Mankins, "Space solar power programs and microwave wireless power transmission technology," IEEE Microwave Magazine, pp. 46-57, Dec. 2002.
  4. V. Jamnejad and A. Silva, "Microwave power beaming strategies for fractionated spacecraft systems," in Proceeding of 2008 IEEE Aerospace Conference, pp. 1-14, March 2008.
  5. B. Choi, J. Nho, H. Cha, T. Ahn, and S. Choi, "Design and Implementation of Low-Profile Contactless Battery Charger Using Planar Printed Circuit Board Windings as Energy Transfer Device," IEEE Transactions on Industrial Electronics, vol. 51, no. 1, pp. 140-147, Feb. 2004. https://doi.org/10.1109/TIE.2003.822039
  6. R. Matias, B. Cunha, and R. Martins, "Modeling inductive coupling for wireless power transfer to integrated circuits," in Proceeding of 2013 IEEE Wireless Power Transfer (WPT), pp. 198-201, May 201.
  7. T. Sun, X. Xie, G. Li, Y. Gu, Y. Deng, and Z. Wang, "A two-hop wireless power transfer system with an efficiency-enhanced power receiver for motion-free capsule endoscopy inspection," IEEE Transactions on Biomedical Engineering, vol. 59, no. 11, pp. 3247-3254, Nov. 2012. https://doi.org/10.1109/TBME.2012.2206809
  8. A. Kurs, A.Karalis, R. Moffatt, J.D. Joanopoulos, P. Fisher, and M. Soljacic, "Wireless power transfer via strongly magnetic resonances", Science, vol. 317, pp. 83-86, 2007. https://doi.org/10.1126/science.1143254
  9. B. Wang, W. Yerazunis, and K. H. Teo, "Wireless power transfer: metamaterials and array of coupled resonators", Proceedings of the IEEE, vol. 101, no. 6, pp. 1359-1368, June 2012.
  10. High Frequency Structure Simulator (HFSS), Version 15.0, ANSYS, Inc., Canonsburg, PA.

Cited by

  1. PRT 차량의 무선급전 시스템 설계 및 구현 vol.12, pp.11, 2014, https://doi.org/10.14400/jdc.2014.12.11.289
  2. 이형코일을 이용한 무선전력전송 시스템 송신 코일 최적화 vol.21, pp.6, 2014, https://doi.org/10.12673/jant.2017.21.6.614