DOI QR코드

DOI QR Code

The Study of Radiation Sensitivity on Fiber Bragg Grating Written in Photo-sensitive Optical Fibers

광민감 광섬유로 제작한 광섬유 브래그 격자 센서의 방사선 민감도에 대한 연구

  • Kim, Jong-Yeol (Department of Nuclear Convergence Technology Development, Korea Atomic Energy Research Institute (KAERI)) ;
  • Lee, Nam-Ho (Department of Nuclear Convergence Technology Development, Korea Atomic Energy Research Institute (KAERI)) ;
  • Jung, Hyun-Kyu (Department of Nuclear Convergence Technology Development, Korea Atomic Energy Research Institute (KAERI))
  • Received : 2014.06.27
  • Accepted : 2014.08.05
  • Published : 2014.08.31

Abstract

In this study, we studied the effect of $Co^{60}$ gamma-radiation on the FBGs written in photo-sensitive and commercial Ge-doped single-mode optical fibers. The FBGs were exposed to gamma-radiation up to a dose of 17.8 kGy at the dose rate of 300 Gy/min. According to the experimental data and analysis results, the lowest Bragg wavelength shift (18 pm) was obtained by a grating written in photosensitive fiber without $H_2$-loading. Also, we confirmed that the H2 loading process has considerably more influence on the Bragg wavelength shift change under gamma radiation than $GeO_2$ contents in the fiber core.

본 논문에서는 광민감 광섬유와 일반 단일모드 광섬유로 제작된 광섬유 브래그 격자 센서의 감마방사선 영향을 분석하였다. 제작된 광섬유 브래그 격자는 $Co^{60}$ 감마선원을 이용하여 300 Gy/min의 선량률로 총선량 17.8 kGy 감마선을 조사하였다. 실험결과를 통하여 수소로딩을 하지 않은 광민감 광섬유로 제작된 브래그 격자가 가장 낮은 약 18 pm의 브래그 파장 이동을 보였다. 또한 방사선 조사에 의한 브래그 파장변화는 광섬유 코어의 $GeO_2$ 함량보다는 수소로딩 공정에 훨씬 큰 영향을 받는다는 것을 확인하였다.

Keywords

References

  1. P. Niewczas, and M. Johnston, "Effects of Neutron-Gamma Radiation on Fiber Bragg Grating Sensors: A Review," IEEE Sensors Journal, vol. 12, no. 11, pp. 3248-3256, 2010.
  2. H. Henschel, S. K. Hoffgen, K. Krebber, J. Kuhnhenn and U. Weinand, "Influence of Fiber Composition and Grating Fabrication on the Radiation Sensitivity of Fiber Bragg Gratings," IEEE Trans. Nucl. Sci., vol. 55, no. 4, pp. 2235-2242, 2008. https://doi.org/10.1109/TNS.2008.2001039
  3. A. F. Fernamdez, F. Berghmansa, A. I. Gusarov, et. al., "Multiplexed fibre Bragg grating sensors for in-core thermometry in nuclear reactors," Conference on Fiber Optic Sensor Technology II, SPIE Proceedings, vol. 4204A, pp. 40-49, 2000.
  4. A. I. Gusarov, D. B. Doyle, N. K. Karafolas, and F. Berghmans, "Fibers-Bragg gratings as a candidate technology for satellite communication payloads: radiation effects issues," Conference on Photonics for Space Environments VII, SPIE Proceedings, vol. 4134, pp. 253-260, 2000.
  5. A. I. Gusarov, F. Berghmans, O. Deparis, Y. Defosse, P. Megret, M. Decreton, and M. Blondel, "High Total Dose Radiation Effects on Temperature Sensing Fiber Bragg Gratings," IEEE Photonics technology letters, vol. 11, pp. 1159-1161, 1999. https://doi.org/10.1109/68.784237
  6. A. Gusarov, D. Starodubov, F. Berghmans, O. Deparis, Y. Defosse, A. F. Fernandez,d, M. Decreton, P. Megret, and M. Blondel, "Comparative study of the MGy dose level ${\gamma}$-radiation effect on FBGs written in different fibres," in Proc. Int. Conf. Optical Fibre Sensors 1999 (OFS 13), Kyongju, Korea, pp. 608-611.
  7. A. Gusarov, S. Vasiliev, O. Medvedkov, I. Mckenzie and F. Berghmans et. al., "Stabilization of Fiber Bragg Gratings Against Gamma Radiation," IEEE Trans. Nucl. Sci., vol. 55, no. 4, pp 2205-2212, 2008. https://doi.org/10.1109/TNS.2008.2001038
  8. S. J. Mihailov, "Fiber Bragg Grating Sensors for Harsh Environments," Sensors 2012, vol. 12, no. 2, pp. 1898-1918, 2012.
  9. IEC, "Optical fibres-Guidance for nuclear radiation tests," IEC/TR 62283, pp. 27-28, 2010.
  10. A. Gusarov, B. Brichard, and D. N. Nikogosyan, "Gamma-Radiation Effects on Bragg Gratings Written by Femtosecond UV Laser in Ge-Doped Fibers," IEEE Trans. Nucl. Sci., vol. 57, no. 4, pp 2024-2028, 2010. https://doi.org/10.1109/TNS.2009.2039494
  11. K. Krebber, H. Henschel, U. Weinand, "Fiber Bragg Gratings as high dose radiation sensors?," Meas. Sci. Technol., vol. 17, pp. 1095-1102, 2006. https://doi.org/10.1088/0957-0233/17/5/S26

Cited by

  1. Radiation Hardness Characteristics of Fiber Bragg Gratings on the High Temperature Annealing Condition vol.20, pp.10, 2016, https://doi.org/10.6109/jkiice.2016.20.10.1980