DOI QR코드

DOI QR Code

Investigation on the component separation of magnetic signal generated from a ferro-magnetic vessel

함정에서 발생하는 자계신호의 성분분리에 대한 검토

  • Kim, Young-Hak (Department of Electrical Engineering, Pukyong University) ;
  • Doh, JaeWon (Maritime R&D Lab. LIGNex1 Co., Ltd.)
  • Received : 2014.05.09
  • Accepted : 2014.06.20
  • Published : 2014.08.31

Abstract

This paper investigated the separation of magnetic signal from a ferro-magnetic object. The magnetic signals were ILM(induced longitudinal magnetization) and IVM(induced vertical magnetization), which were induced by earth magnetic field and PLM(permanent longitudinal magnetization) and PVM(permanent vertical magnetization), which were due to a permanent magnetization of the object, respectively. Magnetic signal separation was based on the fact that magnetization vector could be analyzed according to longitudinal and vertical directions. Also the influence of non-uniform magnetic field from a rectangular coil on the separation was examined. A military vessel with a size close to rectangular coil has more errors on the magnetic signal separation.

함정의 탈자결과 평가를 위한 자계신호의 분리방법에 대한 이론적 근거와 해저 면에 설치되는 사각코일로부터 발생하는 불균일한 자계가 분리결과에 미치는 영향을 측정 신호와 FEM해석을 통해 검토하였다. 측정신호는 제작된 모델함에서 발생하는 자계를 자계센서로 측정한 것이며 FEM 계산은 제작된 모델함과 동일한 형상으로 수행되었다. ILM(induced longitudinal magnetization) 신호와 IVM(induced vertical magnetization) 신호는 함정이 가지는 투자율과 지자계의 수평과 수직방향 성분에 의해 각각 발생하는 자화에 의한 것이며, PLM(permanent longitudinal magnetization) 신호와 PVM(permanent vertical magnetization) 신호는 함정의 영구자화의 수평성분과 수직성분에 의한 것임이 확인되었다. 또한 사각 코일의 수직방향의 자계는 균일한 지자계를 완전히 상쇄할 수 없어 사각코일의 면적에 가까운 크기를 가지는 함정 일수록 사각코일의 자계 불균일성의 영향을 크게 받게 됨을 알았다.

Keywords

References

  1. Y. Vuillermet1, O. Chadebec1, J.-L. Coulomb1, L.-L. Rouve, G. Cauffet1, J. P. Bongiraud1, and L. Demilier, "Scalar Potential Formulation and Inverse Problem Applied to Thin Magnetic Sheets," IEEE Trans. Magn, vol. 44, no. 6, pp. 1054-1057, June. 2008. https://doi.org/10.1109/TMAG.2007.916587
  2. A. Vishnevski, I. Krasnov, and A. Lapokov, "Calculation of static magnetization for thin-walled constructions by boundary element method," IEEE Trans. Magn., vol. 29, no. 5, pp. 2152--2155, Sep. 1993. https://doi.org/10.1109/20.221038
  3. O. Chadebec, J. L. Coulomb, J. P. Bongiraud, G. Cauffet, and P.Le Thiec, "Recent improvements for solving inverse magnetostatic problem applied to thin hulls," IEEE Trans. Magn., vol. 38, no. 2, pp. 1005-1008, Mar. 2002. https://doi.org/10.1109/20.996258
  4. Ki-Chan Kim, Kwan-Seob Yoon, Chang-Seob Yang, Kwang-Ho Shin, Hae-Yong Jeong, and Young-Hak Kim, "Remnant Magnetization Prediction in the Demagnetization Process by Orthogonal Magnetic Field," IEEE Trans. Magn., vol. 47, no.10, pp. 4360-4364, October 2011. https://doi.org/10.1109/TMAG.2011.2157812
  5. T. M. Baynes, G. J. Russell, and A. Bailey, "Comparison of Stepwise Demagnetization Techniques," IEEE Trans. Magn., vol. 38, no.4, pp. 4360-4364, July 2002.
  6. C. S. Yang and H. J. Jung, "Study on analysis method for ship's ferromagnetic signature using magnetic mock-up model," J. KIMST, vol. 10, pp 38-51, 2007.