DOI QR코드

DOI QR Code

Sulfur Dioxide, Mineral Contents and Physicochemical Properties Generated during Manufacture of Bamboo Salt

죽염 제조공정에 따른 이산화황, 미네랄 함량 및 이화학적 특성

  • Kim, Hag-Lyeol (Department of Food Engineering, Solar Salt & Halophyte R&D Center, Mokpo National University) ;
  • Lee, Seong-Jae (DAESANG Sinan Solar Salt Co., Ltd.) ;
  • Lee, Jung-Hee (Department of Food Engineering, Solar Salt & Halophyte R&D Center, Mokpo National University) ;
  • Kim, In-Cheol (Department of Food Engineering, Solar Salt & Halophyte R&D Center, Mokpo National University)
  • 김학렬 (국립목포대학교 공과대학 식품공학과/천일염 및 염생식물 산업화 사업단) ;
  • 이성재 (대상 신안천일염 주식회사) ;
  • 이정희 (국립목포대학교 공과대학 식품공학과/천일염 및 염생식물 산업화 사업단) ;
  • 김인철 (국립목포대학교 공과대학 식품공학과/천일염 및 염생식물 산업화 사업단)
  • Received : 2014.03.25
  • Accepted : 2014.05.26
  • Published : 2014.08.31

Abstract

The purpose of this study was to investigate the mechanisms of behind $SO_2$ formation and elevated cause of reducing power in purple bamboo salt (PBS) along with an analysis of physicochemical properties, content of sulfur compounds, oxidation reduction potential (ORP), mineral contents of salt type (MSS, mudflat solar salt; BS, bamboo salt), and addition of raw bamboo (RB). $SO_2$ content of 630 ppm was detected in PBS. $SO_2$ was not detected in MSS, BS, or RB, whereas $SO_2$ (782 ppm) from $K_2SO_4$ was detected after heating a NaCl, KCl, $MgCl_2$, $MgSO_4$, MgO, $CaCl_2$, $K_2SO_4$, and $FeSO_4$ with RB. $SO_2$ content of BS increased with baking time, and it originated from BSRB1 (13.88 ppm) to BSRB4 (109.13 ppm). $SO_3{^{2-}}$ originated only from MSSRB4 and BSRB2~BSRB4. Sulfate ion content decreased along with increasing $SO_2$ and sulfite ion contents. ORP increased with baking time of MSS and BS, and it was present at higher levels in BSRB4 (-211.40 mV) of BS than MSS. Insoluble content was higher in BS than MSS. Further, Ca, K, and Mg ion contents decreased in MSS and increased in BS with baking time. BSRB4 had 1.4 fold higher levels of Ca, 1.5 fold higher levels of Mg, and 1.8 fold higher levels of K than BS. Li, Al, Mn, Fe, and Sr in MSS as well as Al, Fe, and Ni in BS increased with baking time. Anions (Cl, $NO_3$, and Br) and heavy metals (Pb, Cd, Hg, and As) between MSS and BS were not significantly different. These results suggest that the reducing power of BS was due to $SO_2$ and sulfite ion. To increase the amounts of these compounds and reducing power, higher melting temperature and longer baking time are necessary along with BS, which is created by the addition of RB to roasted salt.

자죽염(purple bamboo salt; PBS)을 제조하는 공정에 영향을 미치는 원염(갯벌천일염, MSS; 죽염, BS)의 종류, 대나무 첨가에 따른 BS의 이화학적 특성, 황 화합물, 미네랄 함량 및 환원력을 비교 분석하고, 이를 통해 PBS에 함유된 $SO_2$와 산화환원전위(ORP)의 발생 원인을 분석하였다. BS를 고온에서 용융시켜 제조한 PBS에서 630 ppm의 $SO_2$가 검출되었다. PBS의 원료 염과 RB에서는 $SO_2$가 검출되지 않았으나, 염화물, 황산염류, 탄산염류와 대나무(RB)를 함께 탄화시켜 $SO_2$ 검출 원인을 확인한 결과 황산칼륨에 의해 782 ppm이 발생하였다. BS의 $SO_2$는 BSRB1(13.88)~BSRB4(109.13 ppm)에서만 발생하였고 $SO{_3}{^{2-}}$는 MSSRB4와 BSRB2~BSRB4에서만 발생하였으며, 시간이 경과함에 따라 증가되는 경향을 나타내었다. $SO_4{^{2-}}$는 시간이 지남에 따라 감소하는 경향을 나타내었으며 $SO_2$$SO_3{^{2-}}$가 많을수록 낮은 함량을 나타내었다. ORP는 모두 시간이 지남에 따라 증가하는 경향을 나타내었고 BS에서 더 높은 수준을 나타내었으며, BSRB4(-211.40 mV)에서 가장 높은 환원력을 나타내었다. 일반적 특성 중 불용분은 BS에서 더 높았으며 RB가 탄화되어 남은 물질들이 영향을 미친 것으로 판단된다. Ca, K, Mg의 경우 굽는 시간 경과에 따라 MSS는 감소, BS는 증가하는 경향을 나타내었다. BSRB4의 Ca는 1.4배, Mg는 1.5배 증가하였고 K 함량은 1.8배 더 높은 것으로 나타났다. 미량 미네랄은 굽는 시간 경과에 따라 MSS에서 Li, Al, Mn, Fe, Sr이 증가되었고, BS에서 Al, Fe, Ni가 증가하였다. 음이온(Cl, $NO_3$, Br)과 중금속(Pb, Cd, Hg, As)은 각 요인에 대한 영향을 받지 않았다. 결론적으로 BS의 기능성을 나타내는 환원력은 $SO_2$$SO_3{^{2-}}$와 같은 저분자 황화합물에 의한 것이며, 이는 한 번 굽는 과정을 거친 BS를 사용하고 이에 RB를 첨가하여 고온에서 용융하는 시간이 길수록 이들 황화물질이 많아져 환원력이 증가된다는 것을 의미하는 것이다.

Keywords

References

  1. KFDA. 2010. Food Code. Korean Food & Drug Administration, Seoul, Korea. p 139-140, 201-202.
  2. Gang ST, Cho YJ, Gang JG, Gong CS, Oh GS. 2006. Quality of bamboo salt element and processing of marine fermentation food. Presented at 2006 Spring Meeting of Korean Aquaculture Society, Jeju, Korea. p 115-116.
  3. Shin HY, Lee EH, Kim CY, Shin TY, Kim SD, Song YS, Lee KN, Hong SH, Kim HM. 2003. Anti-inflammatory activity of Korean folk medicine purple bamboo salt. Immunopharmacol Immunotoxicol 25: 377-384. https://doi.org/10.1081/IPH-120024505
  4. Huh K, Kim YH, Jin DQ. 2001. Protective effect of an aged garlic-bamboo salt mixture on the rat with the alcohol-salicylate induced gastropathy. Yakhak Hoeji 45: 258-268.
  5. Sohn WS, Yoo YC, Kim CR. 1991. The effect of NaCl and bamboo salt on the growth of various oral bacteria. J Korean Acad Oral Health 15: 255-268.
  6. Kim CY, Chung SC, Sohn WS. 1991. Comparison of the anti-plaque and anti-inflammatory effect of the dentifrices containing NaCl and bamboo salt. J Korean Acad Oral Health 15: 269-280.
  7. Kim YH, Ryu HI. 2003. Elements in a bamboo salt and comparison of its elemental contents with those in other salts. Yakhak Hoeji 47: 135-141.
  8. Kim SH, Kang SY, Jung KK, Kim TG, Han HM, Ryu HM, Moon AR. 1998. Characterization and anti-gastric ulcer activity of bamboo salt. J Fd Hyg Safety 13: 252-257.
  9. Kim JH. 2004. Risk management of sulfur dioxide residue in herbal medicine. Final report of Korean Food & Drug Administration. Seoul, Korea. p 21.
  10. Eller PM, Cassinelli ME. 1994. NIOSH manual of analytical methods (NMAM). 4th ed. Centers for Disease Control and Prevention, Cincinnati, OH, USA. p 1-4.
  11. Shinsuke M, Kimiko O, Keiko T, Takahisa M. 2005. Mineral contents and their solubilities of bamboo charcoal. Bamboo Journal 22: 61-70.
  12. Shin HY, Na HJ, Moon PD, Shin T, Shin TY, Kim SH, Hong SH, Kim HM. 2004. Inhibition of mast cell-dependent immediate-type hypersensitivity reactions by purple bamboo salt. J Ethnopharmacol 91: 153-157. https://doi.org/10.1016/j.jep.2003.12.006
  13. Vassilev SV, Baxter D, Andersen LK, Vassileva CG, Morgan TJ. 2012. An overview of the organic and inorganic phase composition of biomass. Fuel 94: 1-33. https://doi.org/10.1016/j.fuel.2011.09.030
  14. Casagrande D, Siefert K, Berschinski C, Sutton N. 1977. Sulphur in peat-forming systems of Okefenokee Swamp and Florida Everglades: origin of sulphur in coal. Geochim Cosmochim Acta 41: 161-167. https://doi.org/10.1016/0016-7037(77)90196-X
  15. Simon RA. 1998. Update on sulfite sensitivity. Allergy 53: 78S-79S.
  16. Wang XB, Jin HF, Tang CS, Du JB. 2011. The biological effect of endogenous sulfur dioxide in the cardiovascular system. Eur J Pharmacol 670: 1-6. https://doi.org/10.1016/j.ejphar.2011.08.031
  17. Meng Z, Zhang H. 2007. The vasodilator effect and its mechanism of sulfur dioxide derivatives on isolated aortic rings of rats. Inhal Toxicol 19: 979-986. https://doi.org/10.1080/08958370701515175
  18. Meng Z, Li Y, Li J. 2007. Vasodilatation of sulfur dioxide derivatives and signal transduction. Arch Biochem Biophys 467: 291-296. https://doi.org/10.1016/j.abb.2007.08.028
  19. Zhang Q, Meng Z. 2009. The vasodilator mechanism of sulfur dioxide on isolated aortic rings of rats: involvement of the $K^+$ and $Ca^{2+}$ channels. Eur J Pharmacol 602: 117-123. https://doi.org/10.1016/j.ejphar.2008.11.030
  20. Park SB, Kwon SD, Cha SH. 1998. Presentation of academy (C. Conservation processing of wood element): Property study of bamboo coal (II). No. C-14 presented at Annual Meeting of the Korean Society of Wood Science Technology.
  21. Sohn HY, Savic M, Padilla R, Han G. 2006. A novel reaction system involving BaS and $BaSO_4$ for converting $SO_2$ to elemental sulfur without generating pollutants: Part I. Feasibility and kinetics of $SO_2$ reduction with BaS. Chem Eng Sci 61: 5082-5087. https://doi.org/10.1016/j.ces.2006.03.029
  22. Kim DH, Rhim JW, Lee SB. 2003. Characteristics of seaweed salts prepared with various seaweeds. Korean J Food Sci Technol 35: 62-66.
  23. Ha JO, Park KY. 1999. Comparison of autooxidation rate and comutagenic effect of different kinds of salt. J Cancer Prev 4: 44-51.
  24. Han SH, Lee SW, Rhee C. 2008. Influence of heat treatment on the physicochemical property and mineral composition of various processed salts. Food Sci Biotechnol 17: 1010-1015.
  25. Jo EJ, Shin DH. 1998. Study on the chemical compositions of sun-dried, refined, and processed salt produced in Chonbuk area. J Fd Hyg Safety 13: 360-364.
  26. Ju IO, Jung GT, Ryu J, Choi JS, Choi YG. 2005. Chemical components and physiological activities of bamboo (Phyllostachys bambusoides Starf) extracts prepared with different methods. Korean J Food Sci Technol 37: 542-548.
  27. Park SB, Kwon SD, Ahn KM, Cha SH. 1998. Presentation of academy (C. Conservation processing of wood element): Property study of bamboo coal (II). No. C-13 presented at Annual Meeting of the Korean Society of Wood Science Technology.
  28. Hong KT, Lee JY, Jang BK. 1996. Heavy metal contents of marketing salts and bay salts by heating. Korean J Sanitation 11: 79-84.
  29. Wang M, Huang ZH, Liu G, Kang F. 2011. Adsorption of dimethyl sulfide from aqueous solution by a cost-effective bamboo charcoal. J Hazard Mater 190: 1009-1015. https://doi.org/10.1016/j.jhazmat.2011.04.041

Cited by

  1. Remineralisation effect of 1,500 ppm fluoride-containing toothpaste in enamel early caries lesion vol.40, pp.4, 2016, https://doi.org/10.11149/jkaoh.2016.40.4.270
  2. Study on Mineral Concentration Changes and Anticariogenic Effects of Organic Bamboo Salt with Different Number of Baking Times vol.52, pp.1, 2018, https://doi.org/10.14397/jals.2018.52.1.61
  3. Microbial Communities and Physicochemical Properties of Myeolchi Jeotgal (Anchovy Jeotgal) Prepared with Different Types of Salts vol.27, pp.10, 2014, https://doi.org/10.4014/jmb.1702.02027
  4. 초기우식법랑질 표면 하방에 미치는 죽염의 재광화 효과 vol.17, pp.5, 2014, https://doi.org/10.13065/jksdh.2017.17.05.817