DOI QR코드

DOI QR Code

Investigation of Turbulence Characteristics of Defect Law Region over Flat plate

평판 위 흐름 Defect Law 영역의 난류 특성 연구

  • Suh, Sung-Bu (Naval Architecture Ocean Engineering, Dong-Eui University) ;
  • Park, Il-Ryong (Naval Architecture Ocean Engineering, Dong-Eui University) ;
  • Jung, Kwang-Hyo (Naval Architecture Ocean Engineering, Pusan National University) ;
  • Lim, Jung-Gwan (Naval Architecture Ocean Engineering, Pusan National University) ;
  • Kim, Kwang-Soo (Advanced Ship Research Division, KRISO) ;
  • Kim, Jin (Advanced Ship Research Division, KRISO)
  • 서성부 (동의대학교 조선해양공학과) ;
  • 박일룡 (동의대학교 조선해양공학과) ;
  • 정광효 (부산대학교 조선해양공학과) ;
  • 임정관 (부산대학교 조선해양공학과) ;
  • 김광수 (한국해양과학기술원 부설 선박해양플랜트 연구소 미래선박연구부) ;
  • 김진 (한국해양과학기술원 부설 선박해양플랜트 연구소 미래선박연구부)
  • Received : 2014.03.05
  • Accepted : 2014.08.19
  • Published : 2014.08.30

Abstract

To investigate the turbulence characteristics within the boundary layer over a flat plate, an experimental study was performed using a PIV technique in a circular water channel. For two water velocities, 0.92 and 1.99 m/s, the water velocity profiles were taken and analyzed to determine turbulent characteristics such as the Reynolds stress, Taylor micro-length scale, and Kolmogorov length scale within the defect law region of the boundary layer. These analysis methods may be applied to research on the friction drag reduction technology using micro-bubbles or an air sheet over the surface of a ship's hull, because the physical reason for the friction drag reduction could be found by understanding the variation of the turbulence characteristics and structures in the boundary layer.

Keywords

References

  1. An, S.M., Ahn, H.T., 2011. Feasibility Study About Friction Drag Reduction Using Partial Air Cavity. School of Naval Architecture & Ocean Engineering, University of Ulsan, 535-540.
  2. Clauser, F.H., 1954. Turbulent Boundary Layers in Adverse pressure Gradients. Journal of the Aeronautical Sciences, 21(2), 91-108. https://doi.org/10.2514/8.2938
  3. Crimaldi, J.P., 1998. Turbulence Structure of Velocity and Scalar Fields Over a Bed of Model Bivalves. Stanford University.
  4. Jacob, B., Olivieri, A., Miozzi, M., Campana, E.F., Piva, R., 2010. Drag Reduction by Microbubbles in a Turbulent Boundary Layer. Physics of Fluids, 22(115104), 1-10.
  5. Kim, D.S., Kim, H.T., Kim, W.J., 2003. Experimental Study of Friction Drag Reduction in Turbulent Flow with Microbubble Injection. Journal of Society of Naval Architects of Korea, 40(3), 1-8. https://doi.org/10.3744/SNAK.2003.40.3.001
  6. Kwon, S.H., Yoon, S.Y., Kim, K.C., 2004. Experimental Study on the Three-Dimensional Topology of Hairpin Packet Structures in Turbulent Boundary Layers. Journal of the Korean Society of Mechanical Engineers, 28(7), 834-841. https://doi.org/10.3795/KSME-B.2004.28.7.834
  7. Latorre, R., Miller, A., Philips, R., 2003. Micro-bubble Resistance Reduction on a Model SES Catamaran. Ocean Engineering, 30, 2297-2309. https://doi.org/10.1016/S0029-8018(03)00079-9
  8. Lewis, E.V., 1988. Principles of Naval Architecture Second Revision, Volume II., The Society of Naval Architects and Marine Engineers, New Jersey.
  9. Nagamatsu, T., Kodama, T., Kakugawa, A., Takai, M., Murakami, K., Ishikawa, K., Kamirisa, H., Ogiwara, S., Yoshida, Y., Suzuki, T., Toda, Y., Kato, H., Ikemoto, A., Yamatani, S., Imo, S., Yamashita, K., 2002. A Full-scale Experiment on Microbubbles for Skin Friction Reduction using SEIUN MARU - Part 2: The Full-scale experiment. Journal of the Society of Naval Architects of Japan, 192, 15-28.
  10. Paik, B.G., Kim, K.R., Kim, J.H., Kim, K.S., Ahn, J.W., Kim, K.S., 2013. Skin Friction Measurement and Its Analysis Using Flow Visualization Techniques. Journal of Ships & Ocean Engineering, 53, 19-26.
  11. Paik, B.G., Pyun, Y.S., Kim, J.H., Kim, K.Y., Kim, K.S., Jung, C.M., Kim, C.K., 2012. Study on the Drag Reduction of 2-D Dimpled-Plates. Journal of Society of Naval Architects of Korea, 49(4), 333-339. https://doi.org/10.3744/SNAK.2012.49.4.333
  12. Park, H., An, N.H., Park, S.H., Chun, H.H., Lee, I.W., 2010. PIV Investigation on the kin Friction Reduction Mechanism of Outer-layer Vertical Blades. Journal of the Korean Society of Visualization, 9(1), 20-28. https://doi.org/10.5407/JKSV.2011.9.1.020
  13. Pope, S.B., 2000. Turbulent Flows. Cambridge University Press, Cambridge.
  14. Raffel, M., Willert, C.E., Kompenhans, J., 1998. Particle Image Velocimetry. Springer-Verlag, Berlin.
  15. Schilichting, H., Gersten, K., 2000. Boundary Layer Theory. Springer.