DOI QR코드

DOI QR Code

AMD3100 improves ovariectomy-induced osteoporosis in mice by facilitating mobilization of hematopoietic stem/progenitor cells

  • Im, Jin Young (Stem Cell Neuroplasticity Research Group, Kyungpook National University) ;
  • Min, Woo-Kie (Department of Orthopaedic Surgery, Kyungpook National University Hospital) ;
  • Park, Min Hee (Stem Cell Neuroplasticity Research Group, Kyungpook National University) ;
  • Kim, NamOh (Stem Cell Neuroplasticity Research Group, Kyungpook National University) ;
  • Lee, Jong Kil (Stem Cell Neuroplasticity Research Group, Kyungpook National University) ;
  • Jin, Hee Kyung (Stem Cell Neuroplasticity Research Group, Kyungpook National University) ;
  • Choi, Je-Yong (Department of Biomedical Science, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University) ;
  • Kim, Shin-Yoon (Department of Orthopaedic Surgery, Kyungpook National University Hospital) ;
  • Bae, Jae-Sung (Stem Cell Neuroplasticity Research Group, Kyungpook National University)
  • Received : 2013.07.10
  • Accepted : 2013.11.19
  • Published : 2014.08.31

Abstract

Inhibition of an increase of osteoclasts has become the most important treatment for osteoporosis. The CXCR4 antagonist, AMD3100, plays an important role in the mobilization of osteoclast precursors within bone marrow (BM). However, the actual therapeutic impact of AMD3100 in osteoporosis has not yet been ascertained. Here we demonstrate the therapeutic effect of AMD3100 in the treatment of ovariectomy-induced osteoporosis in mice. We found that treatment with AMD3100 resulted in direct induction of release of SDF-1 from BM to blood and mobilization of hematopoietic stem/progenitor cells (HSPCs) in an osteoporosis model. AMD3100 prevented bone density loss after ovariectomy by mobilization of HSPCs, suggesting a therapeutic strategy to reduce the number of osteoclasts on bone surfaces. These findings support the hypothesis that treatment with AMD3100 can result in efficient mobilization of HSPCs into blood through direct blockade of the SDF-1/CXCR4 interaction in BM and can be considered as a potential new therapeutic intervention for osteoporosis.

Keywords

References

  1. Usui, M., Yoshida, Y., Tsuji, K., Oikawa, K., Miyazono, K., Ishikawa, I., Yamamoto, T., Nifuji, A. and Noda, M. (2004) Tob deficiency superenhances osteoblastic activity after ovariectomy to block estrogen deficiency-induced osteoporosis. Proc. Natl. Acad. Sci. U S A. 101, 6653-6658.
  2. Mansour, A., Abou-Ezzi, G., Sitnicka, E., Jacobsen, S. E., Wakkach, A. and Blin-Wakkach, C. (2012) Osteoclasts promote the formation of hematopoietic stem cell niches in the bone marrow. J. Exp. Med. 209, 537-549. https://doi.org/10.1084/jem.20110994
  3. van den Bergh, J. P., van Geel, T. A. and Geusens, P. P. (2012) Osteoporosis, frailty and fracture: implications for case finding and therapy. Nat. Rev. Rheumatol. 8, 163-172. https://doi.org/10.1038/nrrheum.2011.217
  4. Kim, T., Ha, H., Shim, K. S., Cho, W. K. and Ma, J. Y. (2013) The anti-osteoporotic effect of Yijung-tang in an ovariectomized rat model mediated by inhibition of osteoclast differentiation. J. Ethnopharmacol. 146, 83-89. https://doi.org/10.1016/j.jep.2012.11.037
  5. Takayanagi, H. (2007) Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat. Rev. Immunol. 7, 292-304. https://doi.org/10.1038/nri2062
  6. Ishii, M., Egen, J. G., Klauschen, F., Meier-Schellersheim, M., Saeki, Y., Vacher, J., Proia, R. L. and Germain, R. N. (2009) Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis. Nature 458, 524-528. https://doi.org/10.1038/nature07713
  7. M. Z., Lee, H., Wysoczynski, M., Wan, W., Marlicz, W., Laughlin, M. J., Kucia, M., Janowska-Wieczorek, A. and Ratajczak, J. (2010) Novel insight into stem cell mobilization- plasma sphingosine-1-phosphate is a major chemoattractant that directs the egress of hematopoietic stem progenitor cells from the bone marrow and its level in pe ripheral blood increases during mobilization due to activation of complement cascade/membrane attack complex. Leukemia 24, 976-985. https://doi.org/10.1038/leu.2010.53
  8. Nervi, B., Ramirez, P., Rettig, M. P., Uy, G. L., Holt, M. S., Ritchey, J. K., Prior, J. L., Piwnica-Worms, D., Bridger, G., Ley, T. J. and DiPersio, J. F. (2009) Chemosensitization of acute myeloid leukemia (AML) following mobilization by the CXCR4 antagonist AMD3100. Blood 113, 6206-6214. https://doi.org/10.1182/blood-2008-06-162123
  9. Rettig, M. P., Ansstas, G. and DiPersio, J. F. (2012) Mobilization of hematopoietic stem and progenitor cells using inhibitors of CXCR4 and VLA-4. Leukemia 26, 34-53. https://doi.org/10.1038/leu.2011.197
  10. Winkler, I. G., Pettit, A. R., Raggatt, L. J., Jacobsen, R. N., Forristal, C. E., Barbier, V., Nowlan, B., Cisterne, A., Bendall, L. J., Sims, N. A. and Levesque, J. P. (2012) Hematopoietic stem cell mobilizing agents G-CSF, cyclophosphamide or AMD3100 have distinct mechanisms of action on bone marrow HSC niches and bone formation. Leukemia 26, 1594-1601. https://doi.org/10.1038/leu.2012.17
  11. Christopher, M. J. and Link, D. C. (2008) Granulocyte colony- stimulating factor induces osteoblast apoptosis and inhibits osteoblast differentiation. J. Bone. Miner. Res. 23, 1765-1774. https://doi.org/10.1359/jbmr.080612
  12. Dale, D. C., Cottle, T. E., Fier, C. J., Bolyard, A. A., Bonilla, M. A., Boxer, L. A., Cham, B., Freedman, M. H., Kannourakis, G., Kinsey, S. E., Davis, R., Scarlata, D., Schwinzer, B., Zeidler, C. and Welte, K. (2003) Severe chronic neutropenia: treatment and follow-up of patients in the severe chronic neutropenia international registry. Am. J. Hematol. 72, 82-93. https://doi.org/10.1002/ajh.10255
  13. Lee, M. Y., Fukunaga, R., Lee, T. J., Lottsfeldt, J. L. and Nagata, S. (1991) Bone modulation in sustained hematopoietic stimulation in mice. Blood 77, 2135-2141.
  14. Dar, A., Schajnovitz, A., Lapid, K., Kalinkovich, A., Itkin, T., Ludin, A., Kao, W. M., Battista, M., Tesio, M., Kollet, O., Cohen, N. N., Margalit, R., Buss, E. C., Baleux, F., Oishi, S., Fujii, N., Larochelle, A., Dunbar, C. E., Broxmeyer, H. E., Frenette, P. S. and Lapidot, T. (2011) Rapid mobilization of hematopoietic progenitors by AMD3100 and catecholamines is mediated by CXCR4-dependent SDF-1 release from bone marrow stromal cells. Leukemia 25, 1286-1296. https://doi.org/10.1038/leu.2011.62
  15. Golan, K., Vagima, Y., Ludin, A., Itkin, T., Cohen-Gur, S., Kalinkovich, A., Kollet, O., Kim, C., Schajnovitz, A., Ovadya, Y., Lapid, K., Shivtiel, S., Morris, A. J., Ratajczak, M. Z. and Lapidot, T. (2012) S1P promotes murine progenitor cell egress and mobilization via S1P1-mediated ROS signaling and SDF-1 release. Blood 119, 2478-2488. https://doi.org/10.1182/blood-2011-06-358614
  16. Pusic, I. and DiPersio, J. F. (2010) Update on clinical experience with AMD3100, an SDF-1/CXCL12-CXCR4 inhibitor, in mobilization of hematopoietic stem and progenitor cells. Curr. Opin. Hematol. 17, 319-326. https://doi.org/10.1097/MOH.0b013e328338b7d5
  17. De Klerck, B., Geboes, L., Hatse, S., Kelchtermans, H., Meyvis, Y., Vermeire, K., Bridger, G., Billiau, A., Schols, D. and Matthys, P. (2005) Pro-inflammatory properties of stromal cell-derived factor-1 (CXCL12) in collagen-induced arthritis. Arthritis. Res. Ther. 7, R1208-1220. https://doi.org/10.1186/ar1806
  18. Kollet, O., Dar, A., Shivtiel, S., Kalinkovich, A., Lapid, K., Sztainberg, Y., Tesio, M., Samstein, R. M., Goichberg, P., Spiegel, A., Elson, A. and Lapidot, T. (2006) Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat. Med. 12, 657-664. https://doi.org/10.1038/nm1417
  19. Paganessi, L. A., Walker, A. L., Tan, L. L., Holmes, I., Rich, E., Fung, H. C. and Christopherson, K. W., 2nd. (2011) Effective mobilization of hematopoietic progenitor cells in G-CSF mobilization defective CD26-/- mice through AMD3100-induced disruption of the CXCL12- CXCR4 axis. Exp. Hematol. 39, 384-390. https://doi.org/10.1016/j.exphem.2010.12.003

Cited by

  1. The Effects of Aging and Sex Steroid Deficiency on the Murine Skeleton Are Independent and Mechanistically Distinct vol.32, pp.3, 2017, https://doi.org/10.1002/jbmr.3014
  2. Neuropeptide Y Induces Hematopoietic Stem/Progenitor Cell Mobilization by Regulating Matrix Metalloproteinase-9 Activity Through Y1 Receptor in Osteoblasts vol.34, pp.8, 2016, https://doi.org/10.1002/stem.2383
  3. Macrophage Migration Inhibitory Factor (MIF) Supports Homing of Osteoclast Precursors to Peripheral Osteolytic Lesions vol.31, pp.9, 2016, https://doi.org/10.1002/jbmr.2854
  4. Inhibition of SDF-1α/CXCR4 Signalling in Subchondral Bone Attenuates Post-Traumatic Osteoarthritis vol.17, pp.6, 2016, https://doi.org/10.3390/ijms17060943