DOI QR코드

DOI QR Code

Effect of Trichostatin A on CNE2 Nasopharyngeal Carcinoma Cells - Genome-wide DNA Methylation Alteration

  • Yang, Xiao-Li (Medical Scientific Research Center, Guangxi Medical University) ;
  • Zhang, Cheng-Dong (Medical Scientific Research Center, Guangxi Medical University) ;
  • Wu, Hua-Yu (Medical Scientific Research Center, Guangxi Medical University) ;
  • Wu, Yong-Hu (Medical Scientific Research Center, Guangxi Medical University) ;
  • Zhang, Yue-Ning (Medical Scientific Research Center, Guangxi Medical University) ;
  • Qin, Meng-Bin (Medical Scientific Research Center, Guangxi Medical University) ;
  • Wu, Hua (Medical Scientific Research Center, Guangxi Medical University) ;
  • Liu, Xiao-Chun (Department of laboratories, The People's Hospital of Guangxi Zhuang Autonomous Region) ;
  • Lina, Xing (Medical Scientific Research Center, Guangxi Medical University) ;
  • Lu, Shao-Ming (Medical Scientific Research Center, Guangxi Medical University)
  • Published : 2014.06.15

Abstract

Trichostatin A (TSA) is a histone deacetylase (HDAC) inhibitor. We here investigated its effects on proliferation and apoptosis of the CNE2 carcinoma cell line, and attempted to establish genome-wide DNA methylation alteration due to differentially histone acetylation status. After cells were treated by TSA, the inhibitory rate of cell proliferation was examined with a CCK8 kit, and cell apoptosis was determined by flow cytometry. Compared to control, TSA inhibited CNE2 cell growth and induced apoptosis. Furthermore, TSA was found to induce genome-wide methylation alteration as assessed by genome-wide methylation array. Overall DNA methylation level of cells treated with TSA was higher than in controls. Function and pathway analysis revealed that many genes with methylation alteration were involved in key biological roles, such as apoptosis and cell proliferation. Three genes (DAP3, HSPB1 and CLDN) were independently confirmed by quantitative real-time PCR. Finally, we conclude that TSA inhibits CNE2 cell growth and induces apoptosis in vitro involving genome-wide DNA methylation alteration, so that it has promising application prospects in treatment of NPC in vivo. Although many unreported hypermethylated/hypomethylated genes should be further analyzed and validated, the pointers to new biomarkers and therapeutic strategies in the treatment of NPC should be stressed.

Keywords

References

  1. Arrigo AP, Gibert B (2012). HspB1 dynamic phospho-oligomeric structure dependent interactome as cancer therapeutic target. Curr Mol Med, 12, 1151-63. https://doi.org/10.2174/156652412803306693
  2. Arzenani MK, Zade AE, Ming Y, et al (2011). Genomic DNA hypomethylation by histone deacetylase inhibition implicates DNMT1 nuclear dynamics. Mol Cell Biol, 31, 4119-28. https://doi.org/10.1128/MCB.01304-10
  3. Cecconi D, Scarpa A, Donadelli M, et al (2003). Proteomic profiling of pancreatic ductal carcinoma cell lines treated with trichostatin-A. Electrophoresis, 24, 1871-8. https://doi.org/10.1002/elps.200305430
  4. Chan AT, Leung SF, Ngan RK, et al (2005). Overall survival after concurrent cisplatin-radiotherapy compared with radiotherapy alone in locoregionally advanced nasopharyngeal carcinoma. J Natl Cancer Inst, 97, 536-9. https://doi.org/10.1093/jnci/dji084
  5. Dahiya N, Becker KG, Wood WH 3rd, et al (2011). Claudin-7 is frequently overexpressed in ovarian cancer and promotes invasion. PLoS One, 6, e22119. https://doi.org/10.1371/journal.pone.0022119
  6. Dokmanovic M, Clarke C, Marks PA (2007). Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res, 5, 981-9. https://doi.org/10.1158/1541-7786.MCR-07-0324
  7. Du C, Yang P, Zhang G, et al (2012). Effect of Arsenic trioxide on EBV LMP1 mediated E-cadherin silencing in nasopharyngeal carcinoma. Head Neck Oncol, 4, 55.
  8. Eberharter A, Becker PB (2002). Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics. EMBO Rep, 3, 224-9. https://doi.org/10.1093/embo-reports/kvf053
  9. Eriksson I, Joosten M, Roberg K, Ollinger K (2013). The histone deacetylase inhibitor trichostatin A reduces lysosomal pH and enhances cisplatin-induced apoptosis. Exp Cell Res, 319, 12-20.
  10. Fabbri M, Garzon R, Cimmino A, et al (2007). MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA, 104, 15805-10. https://doi.org/10.1073/pnas.0707628104
  11. Gao J, Wang L, Xu J, et al (2013). Aberrant DNA methyltransferase expression in pancreatic ductal adenocarcinoma development and progression. J Exp Clin Cancer Res, 32, 86. https://doi.org/10.1186/1756-9966-32-86
  12. Gibert B, Simon S, Dimitrova V, et al (2013). Peptide aptamers: tools to negatively or positively modulate HSPB1 (27) function. Philos Trans R Soc Lond B Biol Sci, 368, 20120075. https://doi.org/10.1098/rstb.2012.0075
  13. Gilbert J, Gore SD, Herman JG, Carducci MA (2004). The clinical application of targeting cancer through histone acetylation and hypomethylation. Clin Cancer Res, 10, 4589-96. https://doi.org/10.1158/1078-0432.CCR-03-0297
  14. Glaser KB (2007). HDAC inhibitors: clinical update and mechanism-based potential. Biochem Pharmacol, 74, 659-71. https://doi.org/10.1016/j.bcp.2007.04.007
  15. Gregory PD, Wagner K, Horz W (2001). Histone acetylation and chromatin remodeling. Exp Cell Res, 265, 195-202. https://doi.org/10.1006/excr.2001.5187
  16. Harada T, Iwai A, Miyazaki T (2010). Identification of DELE, a novel DAP3-binding protein which is crucial for death receptor-mediated apoptosis induction. Apoptosis, 15, 1247-55. https://doi.org/10.1007/s10495-010-0519-3
  17. Harrison IF, Dexter DT (2013). Epigenetic targeting of histone deacetylase: therapeutic potential in Parkinson's disease. Pharmacol Ther, 140, 34-52. https://doi.org/10.1016/j.pharmthera.2013.05.010
  18. Hsueh C, Chang YS, Tseng NM, et al (2010). Expression pattern and prognostic significance of claudins 1, 4, and 7 in nasopharyngeal carcinoma. Hum Pathol, 41, 944-50. https://doi.org/10.1016/j.humpath.2010.01.005
  19. Huettel B, Kanno T, Daxinger L, et al (2007). RNA-directed DNA methylation mediated by DRD1 and Pol IVb: a versatile pathway for transcriptional gene silencing in plants. Biochim Biophys Acta, 1769, 358-74. https://doi.org/10.1016/j.bbaexp.2007.03.001
  20. Irvine RA, Lin IG, Hsieh CL (2002). DNA methylation has a local effect on transcription and histone acetylation. Mol Cell Biol, 22, 6689-96. https://doi.org/10.1128/MCB.22.19.6689-6696.2002
  21. Jacques C, Fontaine JF, Franc B, et al (2009). Death-associated protein 3 is overexpressed in human thyroid oncocytic tumours. Br J Cancer, 101, 132-8. https://doi.org/10.1038/sj.bjc.6605111
  22. Jamshed A, Hussain R, Iqbal H (2014). Gemcitabine and cisplatin followed by chemo-radiation for advanced nasopharyngeal carcinoma. Asian Pac J Cancer Prev, 15, 899-904. https://doi.org/10.7314/APJCP.2014.15.2.899
  23. Johnstone RW, Licht JD (2003). Histone deacetylase inhibitors in cancer therapy: is transcription the primary target. Cancer Cell, 4, 13-8. https://doi.org/10.1016/S1535-6108(03)00165-X
  24. Kartalou M, Essigmann JM (2001). Mechanisms of resistance to cisplatin. Mutat Res, 478, 23-43. https://doi.org/10.1016/S0027-5107(01)00141-5
  25. Laurent L, Wong E, Li G, et al (2010). Dynamic changes in the human methylome during differentiation. Genome Res, 20, 320-31. https://doi.org/10.1101/gr.101907.109
  26. Lee AW, Tung SY, Chua DT, et al (2010). Randomized trial of radiotherapy plus concurrent-adjuvant chemotherapy vs radiotherapy alone for regionally advanced nasopharyngeal carcinoma. J Natl Cancer Inst, 102, 1188-98. https://doi.org/10.1093/jnci/djq258
  27. Lee JW, Hsiao WT, Chen HY, et al (2010). Upregulated claudin-1 expression confers resistance to cell death of nasopharyngeal carcinoma cells. Int J Cancer, 126, 1353-66.
  28. Lefranc F, Kiss R (2006). Autophagy, the Trojan horse to combat glioblastomas. Neurosurg Focus, 20, E7. https://doi.org/10.3171/foc.2006.20.4.4
  29. Li HP, Peng CC, Chung IC, et al (2013). Aberrantly hypermethylated Homeobox A2 derepresses metalloproteinase-9 through TBP and promotes invasion in Nasopharyngeal carcinoma. Oncotarget, 4, 2154-65.
  30. Limpaiboon T (2012). Epigenetic aberrations in cholangiocarcinoma: potential biomarkers and promising target for novel therapeutic strategies. Asian Pac J Cancer Prev, 13, 41-5. https://doi.org/10.7314/APJCP.2012.13.1.041
  31. Liu H, Qi B, Guo X, et al (2013). Genetic variations in radiation and chemotherapy drug action pathways and survival in locoregionally advanced nasopharyngeal carcinoma treated with chemoradiotherapy. PLoS One, 8, e82750. https://doi.org/10.1371/journal.pone.0082750
  32. Liu Y, Wang L, Lin XY, et al (2012). Anti-apoptotic effect of claudin-1 on TNF-alpha-induced apoptosis in human breast cancer MCF-7 cells. Tumour Biol, 33, 2307-15. https://doi.org/10.1007/s13277-012-0493-1
  33. Locke SM, Martienssen RA (2006). Slicing and spreading of heterochromatic silencing by RNA interference. Cold Spring Harb Symp Quant Biol, 71, 497-503. https://doi.org/10.1101/sqb.2006.71.062
  34. Lu TY, Kao CF, Lin CT, et al (2009). DNA methylation and histone modification regulate silencing of OPG during tumor progression. J Cell Biochem, 108, 315-25. https://doi.org/10.1002/jcb.22256
  35. Lu Z, Ding L, Lu Q, Chen, YH (2013). Claudins in intestines: Distribution and functional significance in health and diseases. Tissue Barriers, 1, e24978. https://doi.org/10.4161/tisb.24978
  36. Ma AN, Lu J, Zhou XJ, Wang YX (2011). Histone deacetylation directs DNA methylation in survivin gene silencing. Biochem Biophys Res Commun, 404, 268-72. https://doi.org/10.1016/j.bbrc.2010.11.105
  37. Marks PA, Richon VM, Miller T, Kelly WK (2004). Histone deacetylase inhibitors. Adv Cancer Res, 91, 137-68. https://doi.org/10.1016/S0065-230X(04)91004-4
  38. McBain JA, Eastman A, Nobel CS, Mueller GC (1997). Apoptotic death in adenocarcinoma cell lines induced by butyrate and other histone deacetylase inhibitors. Biochem Pharmacol, 53, 1357-68. https://doi.org/10.1016/S0006-2952(96)00904-5
  39. Ou JN, Torrisani J, Unterberger A, et al (2007). Histone deacetylase inhibitor Trichostatin A induces global and gene-specific DNA demethylation in human cancer cell lines. Biochem Pharmacol, 73, 1297-307. https://doi.org/10.1016/j.bcp.2006.12.032
  40. PA Marks RAR, VM Richon RB (2001). Histone deacetylases and cancer: causes and therapies. Nature Reviews Cancer, 1, 194-202. https://doi.org/10.1038/35106079
  41. Platta CS, Greenblatt DY, Kunnimalaiyaan M, Chen H (2007). The HDAC inhibitor trichostatin A inhibits growth of small cell lung cancer cells. J Surg Res, 142, 219-26. https://doi.org/10.1016/j.jss.2006.12.555
  42. Qin, L, Zhang, X, Zhang, L, et al (2008). Downregulation of BMI-1 enhances 5-fluorouracil-induced apoptosis in nasopharyngeal carcinoma cells. Biochem Biophys Res Commun, 371, 531-5. https://doi.org/10.1016/j.bbrc.2008.04.117
  43. Roth SY, Denu JM, Allis CD (2001). Histone acetyltransferases. Annu Rev Biochem, 70, 81-120. https://doi.org/10.1146/annurev.biochem.70.1.81
  44. Saha RN, Pahan K (2006). HATs and HDACs in neurodegeneration: a tale of disconcerted acetylation homeostasis. Cell Death Differ, 13, 539-50. https://doi.org/10.1038/sj.cdd.4401769
  45. Selker EU (1998). Trichostatin A causes selective loss of DNA methylation in Neurospora. Proc Natl Acad Sci USA, 95, 9430-5. https://doi.org/10.1073/pnas.95.16.9430
  46. Shin JY, Kim HS, Lee KS, et al (2000). Mutation and expression of the p27KIP1 and p57KIP2 genes in human gastric cancer. Exp Mol Med, 32, 79-83. https://doi.org/10.1038/emm.2000.14
  47. Shiva STV, Willems L (2014). Epigenetic modulators mitigate angiogenesis through a complex transcriptomic network. Vascul Pharmacol, ???.
  48. Siddik ZH (2003). Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene, 22, 7265-79. https://doi.org/10.1038/sj.onc.1206933
  49. Sigalotti L, Fratta E, Coral S, Maio M (2013). Epigenetic drugs as immunomodulators for combination therapies in solid tumors. Pharmacol Ther, 142, 339-50.
  50. Smith BC, Denu JM (2009). Chemical mechanisms of histone lysine and arginine modifications. Biochim Biophys Acta, 1789, 45-57. https://doi.org/10.1016/j.bbagrm.2008.06.005
  51. Spano JP, Busson P, Atlan D, et al (2003). Nasopharyngeal carcinomas: an update. Eur J Cancer, 39, 2121-35. https://doi.org/10.1016/S0959-8049(03)00367-8
  52. Thiagalingam S, Cheng KH, Lee HJ, et al (2003). Histone deacetylases: unique players in shaping the epigenetic histone code. Ann N Y Acad Sci, 983, 84-100. https://doi.org/10.1111/j.1749-6632.2003.tb05964.x
  53. Tian F, Yip SP, Kwong DL, et al (2013). Promoter hypermethylation of tumor suppressor genes in serum as potential biomarker for the diagnosis of nasopharyngeal carcinoma. Cancer Epidemiol, 37, 708-13. https://doi.org/10.1016/j.canep.2013.05.012
  54. Tse C, Sera T, Wolffe AP, Hansen JC (1998). Disruption of higher-order folding by core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA polymerase III. Mol Cell Biol, 18, 4629-38.
  55. Tsuji N, Kobayashi M, Nagashima K, et al (1976). A new antifungal antibiotic, trichostatin. J Antibiot, 29, 1-6. https://doi.org/10.7164/antibiotics.29.1
  56. Vaillant I, Paszkowski J (2007). Role of histone and DNA methylation in gene regulation. Curr Opin Plant Biol, 10, 528-33. https://doi.org/10.1016/j.pbi.2007.06.008
  57. Villar-Garea A, Esteller M (2004). Histone deacetylase inhibitors: understanding a new wave of anticancer agents. Int J Cancer, 112, 171-8. https://doi.org/10.1002/ijc.20372
  58. Wang JJ, Liu Y, Zheng Y, et al (2012). Comparative proteomics analysis of colorectal cancer. Asian Pac J Cancer Prev, 13, 1663-6. https://doi.org/10.7314/APJCP.2012.13.4.1663
  59. Wang X, He C, Moore SC, Ausio J (2001). Effects of histone acetylation on the solubility and folding of the chromatin fiber. J Biol Chem, 276, 12764-8. https://doi.org/10.1074/jbc.M100501200
  60. Wee JT, Ha TC, Loong SL, Qian CN (2010). Is nasopharyngeal cancer really a “Cantonese cancer”. Chin J Cancer, 29, 517-26. https://doi.org/10.5732/cjc.009.10329
  61. Wozniak RJ, Klimecki WT, Lau SS, et al (2007). 5-Aza-2'-deoxycytidine-mediated reductions in G9A histone methyltransferase and histone H3 K9 di-methylation levels are linked to tumor suppressor gene reactivation. Oncogene, 26, 77-90. https://doi.org/10.1038/sj.onc.1209763
  62. Zhang B, Qu JQ, Xiao L, et al (2012). Identification of heat shock protein 27 as a radioresistance-related protein in nasopharyngeal carcinoma cells. J Cancer Res Clin Oncol, 138, 2117-25. https://doi.org/10.1007/s00432-012-1293-0
  63. Zhang GQHFYLF (2008). Effects of trichostatin A (TSA) on growth and gene expression in HeLa cells. Chin Germ J Clin Oncol, 304-8.
  64. Zhang QC, Jiang SJ, Zhang S, Ma XB (2012). Histone deacetylase inhibitor trichostatin A enhances anti-tumor effects of docetaxel or erlotinib in A549 cell line. Asian Pac J Cancer Prev, 13, 3471-6. https://doi.org/10.7314/APJCP.2012.13.7.3471