DOI QR코드

DOI QR Code

Influence of Indenter Tip Geometry and Poisson's Ratio on Load-Displacement Curve in Instrumented Indentation Test

계장화 압입시험의 하중-변위 곡선에 미치는 선단 형상 및 푸아송비의 영향

  • Lee, Jin Haeng (Research Reactor Mechanical Structure Design Division, Korea Atomic Energy Research Institute)
  • 이진행 (한국원자력연구원 장치설계부)
  • Received : 2014.04.06
  • Accepted : 2014.07.06
  • Published : 2014.09.01

Abstract

The tip geometries of the pyramidal and conical indenters used for micro/nano-indentation tests are not sharp. They are inevitably rounded because of their manufacturability and wear. In many indentation studies, the tip geometries of the pyramidal indenters are simply assumed to be spherical, and the theoretical solution for spherical indentation is simply applied to the geometry at a shallow indentation depth. This assumption, however, has two problems. First, the accuracy of the theoretical solution depends on the material properties and indenter shape. Second, the actual shapes of pyramidal indenter tips are not perfectly spherical. Hence, we consider the effects of these two problems on indentation tests via finite element analysis. We first show the relationship between the Poisson's ratio and load-displacement curve for spherical indentation, and suggest improved solutions. Then, using a possible geometry for a Berkovich indenter tip, we analyze the characteristics of the load-displacement curve with respect to the indentation depth.

마이크로/나노 압입시험에 사용되는 각뿔 혹은 원뿔형 압입자의 선단 형상은 제작한계 및 사용 중 마모 등으로 인해 필수적으로 곡면 형태를 띄게 된다. 많은 압입시험 관련 연구에서 각뿔형 압입자의 선단 형상은 편의상 구형으로 가정한 후, 얕은 압입에 대한 구형압입 이론식을 적용하고 있다. 이러한 가정에는 근본적으로 두 가지 문제점이 있는데, 첫 번째로 이론해의 정확성은 재료 물성치 및 압입자 형상에 따라 변화한다는 점이며, 두 번째로 각뿔형 압입자의 실제 선단 형상은 이상적인 구형이 아니라는 점이다. 본 연구에서는 유한요소해석에 기반하여 압입시험에 미치는 이 두 요소의 영향을 분석한다. 먼저 탄성 구형 압입시험에 대해 푸아송비와 하중-변위 곡선의 상관관계를 살펴보고, 이를 기반으로 수정된 구형 탄성 압입 관계식을 제시한다. 이어 가정된 Berkovich 선단 형상의 3차원 유한요소해석으로부터 압입깊이에 따른 하중-변위 곡선의 특성을 분석한다.

Keywords

References

  1. Oliver, W. C. and Pharr, G. M., 1992, "An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments," J. Mater. Res., Vol. 7, pp. 1564-1583. https://doi.org/10.1557/JMR.1992.1564
  2. Pharr, G. M., Oliver, W. C. and Brotzen, F. R., 1992, "On the Generality of the Relationship among Contact Stiffness, Contact Area and Elastic Modulus during Indentation," J. Mater. Res., Vol. 7, pp. 613-617. https://doi.org/10.1557/JMR.1992.0613
  3. Oliver, W. C. and Pharr, G. M., 2004, "Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology," J. Mater. Res., Vol. 19, No. 1, pp. 3-20. https://doi.org/10.1557/jmr.2004.19.1.3
  4. Chen, X., Ogasawara, N., Zhao, M. and Chiba, N., 2007, "On the Uniqueness of Measuring Elastoplastic Properties from Indentation: The Indistinguishable Mystical Materials. J. Mech. Phys. Solids, Vol. 55, pp. 1618-1660. https://doi.org/10.1016/j.jmps.2007.01.010
  5. Lawn, B. R., Evans, A. G., and Marshall, D. B., 1980, "Elastic/Plastic Indentation Damage in Ceramics: The Median/Radial Crack System," J. Am. Ceram. Soc., Vol. 63, pp. 574-581. https://doi.org/10.1111/j.1151-2916.1980.tb10768.x
  6. Lee, J. H., Gao, Y. F., Johanns, K. E. and Pharr, G. M., 2012, "Cohesive Interface Simulations of Indentation Cracking as a Fracture Toughness Measurement Method for Brittle Materials," Acta Mater., Vol. 60, pp. 5448-5467. https://doi.org/10.1016/j.actamat.2012.07.011
  7. Bower, A. F., Fleck, N. A., Needleman, A. and Ogbonna, N., 1993, "Indentation of a Power Law Creeping Solid," Proc. R. Soc. Lond. (A), Vol. 441, No. 1911, pp. 97-124. https://doi.org/10.1098/rspa.1993.0050
  8. Lee, J. H. and Lee, H., 2012, "Transient Creep Analysis in Indentation Tests," Trans. Korean Soc. Mech. Eng. A, Vol. 36, No. 1, pp. 81-90. https://doi.org/10.3795/KSME-A.2012.36.1.081
  9. Lee, J. H., Lee, H., Hyun, H. C., Kim, M., 2010, "Numerical Approaches and Experimental Verification of the Conical Indentation Techniques for Residual Stress Evaluation," J. Mater. Res., Vol. 25, No. 11, pp. 2212-2223. https://doi.org/10.1557/jmr.2010.0275
  10. Lee, J. H., Lee, H. and Kim, D. H., 2008, "A Numerical Approach to Elastic Modulus Evaluation Using Conical Indenter with Finite Tip Radius," J. Mater. Res., Vol. 23, No. 1, pp. 2528-2537. https://doi.org/10.1557/jmr.2008.0314
  11. Bei, H., George, H. P., Hay, J. L. and Pharr, G. M., 2005, "Influence of Indenter Tip Geometry on Elastic Deformation During Nanoindentation," Phy. Rev. Lett., Vol. 95, pp. 045501-1-4. https://doi.org/10.1103/PhysRevLett.95.045501
  12. Bei, H., Gao, Y. F., Shim, S., George, E. P. and Pharr, G. M., 2008, "Strength Difference Arising from Homogeneous Versus Heterogeneous Dislocation Nucleation," Phys. Rev. B, Vol. 77, pp. 060103-1-4. https://doi.org/10.1103/PhysRevB.77.060103
  13. Sneddon, I. N., 1951, Fourier Transforms, McGraw-Hill, pp. 450-468.
  14. Sneddon, I. N., 1965, "The Relaxation between Load and Penetration in the Axisymmetric Boussinesq Problem for a Punch of Arbitrary Profile," Int. J. Eng. Sci., Vol. 3, pp. 47-57. https://doi.org/10.1016/0020-7225(65)90019-4
  15. Hay, J. C., Bolshakov, A. and Pharr, G. M., 1999, "A Critical Examination of the Fundamental Relations Used in the Analysis of Nanoindentation Data," J. Mater. Res., Vol. 14, pp. 2296-2305. https://doi.org/10.1557/JMR.1999.0306
  16. ABAQUS User's Manual, Version 6.12, 2012, Dassault Systemes SImulia Corp., Providence, RI, USA.
  17. Hyun, H. C., Kim, M., Lee, J. H. and Lee, H., 2011, "A Dual Conical Indentation Technique Based on FEA Solutions for Property Evaluation," Mech. Mater., Vol. 43, No. 6, pp. 313-331. https://doi.org/10.1016/j.mechmat.2011.03.003