DOI QR코드

DOI QR Code

A Study on Design Criteria of Rockfall Protection Fence Considering Reliability Index

신뢰성지수를 고려한 낙석방지울타리 설계기준 고찰

  • 석재욱 (한국시설안전공단 시설안전연구소) ;
  • 이종건 (한국시설안전공단 시설안전연구소) ;
  • 김용수 (한국시설안전공단 시설안전연구소) ;
  • 문준식 (경북대학교 토목공학과)
  • Received : 2014.06.25
  • Accepted : 2014.06.22
  • Published : 2014.08.31

Abstract

The performance criteria of rockfall protection fence and reliability index were investigated considering characteristic of rockfall energy occurred at 160 cut slopes in national highway. As a result of study on statistic of variables that decide rockfall energy using Monte-Carlo simulation, the degree of slope was normal distribution type, mass of rockfall and height of slope was lognormal distribution type. The rockfall energy follows lognormal distribution because of statistical characteristic of mass of rockfall. The reliability index of rockfall protection fence was 0.678 and the failure probability of was very high as 24.9%. Proposed performance criteria of rockfall protection fence considering the scale of domestic rockfall energy is maximum 500 kJ and the range of reliability index was from 1.028 to 1.956. the failure probability of rockfall protection fence was from 14.8 to 2.5 percent if applying the performance criteria using the reliability index.

국내 국도에 분포하는 160개 비탈면에서의 발생한 낙석에너지의 특성을 고려하여 신뢰도지수를 산정하고 낙석방지울타리의 요구성능을 고찰하였다. 몬테카를로 시뮬레이션을 통해 낙석에너지를 결정하는 변수의 통계적 특성을 고찰한 결과 비탈면 경사는 정규분포형태이며, 낙석중량과 발생높이는 대수정규분포형태인 것으로 나타났다. 낙석에너지는 대수정규분포형태인 것으로 나타났으며 이는 낙석중량에 영향을 받은 결과로 판단된다. 낙석방지울타리의 신뢰성지수는 0.678이며 파괴확률은 24.9%로 매우 높은 것으로 나타났다. 국내의 낙석에너지 규모를 고려하여 제시된 낙석방지울타리의 요구성능은 최대 500kJ 수준이며 신뢰성지수의 범위는 1.028~1.956으로 분석되었다. 제시된 신뢰도지수를 통해 비탈면의 낙석에너지가 고려된 요구성능을 적용할 경우 낙석방지울타리의 파괴확률은 14.8~2.5% 수준인 것으로 분석되었다.

Keywords

References

  1. 국토해양부, 2008, 도로안전시설 설치 및 관리지침 통합편, 낙석방지시설편
  2. Baecher, G.B and Christian, J.T., 2003, Reliability and statistics in geotechnical engineering, John Wiley and Sons, pp. 605.
  3. Bae, G. J., Koo, H. B. and Back, Y. 2002, Study on suggestion a standard installation for damage reduction alarm system using cut-slope data, J. of engineering geology, Vol. 12, No. 1, pp. 53-61.
  4. Choi, S. O. and Chung, S. K., 2004, Assessment of RMR with the Monte Carlo Simulation and Stability Analysis of Rock Slopes, Tunnel & Underground Space, Vol. 14, No. 2, pp. 97-107.
  5. Cornell, C. A. 1969, A Probability-based structural code, Journal Proceedings, Vol 66, No. 12, pp. 974-985.
  6. Hasofer, A.M., and N.C. Lind, 1974, Exact and invariant second moment code format, J. of the Engineering Mechanics, ASCE, Vol. 100, No. EM1, pp.111-121.
  7. Kevin C., 2000, Reliability of Structures 624, McGrwa-Hill., pp. 45.
  8. Kim, K, S., 2010, Contemplation of rockfall simulation parameters and design of rockfall fence, Geo-environmental and slope stability conference 2010, pp. 344-350.
  9. Koo, H. B., Park, H. J. and Paik, Y. S., 2001, Characteristics and energy absorbing capacity for rockfall protection fence from in-situ rockfall tests, Geotechnical engineering, Vol. 17, No. 6, pp. 111-121.
  10. Korea institute of construction technology, 1999, Development and operation of road cut-slope management system, Ministry of Construction & Transportation.
  11. Lee, S. E., Jun, S. K. and Kang. S. J., 2005, A Study on the Uncertatnty of the Classification of Rock Mass Rating, Tunnel & Underground space, Vol. 15, No. 6, pp. 441-451.
  12. Moon, B. K. 2013, Performance assessment and improvement scheme for domestic rockfall barriers, A doctoral dissertation KongJu Univ.
  13. Park, S. W. and Park. H. J., 2010, Probabilistic stability and sensitivity analysis for a failed rock slope using a Monte carlo simulation, J. of engineering geology, Vol. 20, No. 4, pp. 437-447.
  14. Park, S. W., 2010, Probabilistic Analysis of rock slope stability using terrestrial LiDAR data, A doctoral dissertation SeJong-Univ.
  15. You, B. O., Han, W. J., Lee, S. D. and Shim, J. W., 2011, A study on bounce height and impact energy considering slope height, rockfall weight using rockfall program, Korea geo-environmental society, Vol. 12, No. 3, pp. 47-54.
  16. Li, K.S and Lo, C.R, 1993, Probabilistic methods in geotechnical engineering, Balkema A.A., pp.333.