DOI QR코드

DOI QR Code

Study on the Nonlinear Electromagnetic Acoustic Resonance Method for the Evaluation of Hidden Damage in a Metallic Material

금속 재료의 잠닉손상 평가를 위한 비선형 전자기음향공진 기법에 관한 연구

  • Received : 2014.04.04
  • Accepted : 2014.07.21
  • Published : 2014.08.30

Abstract

Recently, much attention has been paid to nonlinear ultrasonic technology as a potential tool to assess hidden damages that cannot be detected by conventional ultrasonic testing. One nonlinear ultrasonic technique is measurement of the resonance frequency shift, which is based on the hysteresis of the material elasticity. Sophisticated measurement of resonance frequency is required, because the change in resonance frequency is usually quite small. In this investigation, the nonlinear electromagnetic acoustic resonance (NEMAR) method was employed. The NEMAR method uses noncontact electromagnetic acoustic transducers (EMATs) in order to minimize the effect of the transducer on the frequency response of the object. Aluminum plate specimens that underwent three point bending fatigue were tested with a shear wave EMAT. The hysteretic nonlinear parameter ${\alpha}$, a key indicator of damage, was calculated from the resonance frequency shift at several levels of input voltage. The hysteretic nonlinear parameter of a damaged sample was compared to that of an intact one, showing a difference in the values.

최근 전통적 초음파기법이 탐상할 수 없는 잠닉손상을 평가할 수 있는 잠재적 기술로서 비선형 초음파기법들에 대한 많은 관심이 있다. 비선형 초음파기법중 하나인 공진주파수 변화를 이용하는 기법은 재료의 탄성영역에서의 이력에 근거한 기술이다. 공진주파수의 변화량이 아주 작기 때문에 정교한 공진주파수 측정장치가 필요하다. 본 연구에서는 비선형 전자기음향공진기법을 적용하였다. 비선형 전자기음향공진기법은 비접촉 EMAT 센서를 사용하기 때문에 재료의 주파수 응답에 영향을 최소화할 수 있다. 3점 굽힘 피로시험을 한 알루미늄판 시편에 횡파 EMAT으로 실험을 실시하였다. 전압을 여러 레벨로 인가하며 공진을 발생시켜 잠닉손상측정에 중요한 요인중 하나인 이력 비선형 파라미터 ${\alpha}$를 공진주파수 변화로부터 산출하였다. 비손상시편과 손상시편에서의 측정된 이력 비선형 인자의 값이 서로 차이가 남을 확인하였다.

Keywords

References

  1. K. Y. Jhang, "Nonlinear ultrasonic techniques for nondestructive assessment of micro damage in material: A review," International Journal of Precision Engineering and Manufacturing, Vol. 10, No. 1, pp. 123-135 (2009)
  2. K. E-A. Van Den Abeele, "Elastic pulsed wave propagation in media with second- or higher-order nonlinearity. Part I. theoretical framework," J. Acoust. Soc. Am., Vol. 99, No. 6, pp. 3334-3345 (1996) https://doi.org/10.1121/1.414890
  3. Y. M. Cheong, M. K. Alam and C. G. Kim, "Nonlinear parameters for a diagnosis of microscale cracks using a nonlinear resonant ultrasound spectroscopy(NRUS)," American Institute of Physics Conference Proceedings, Vol. 29, pp. 1439-1444 (2010)
  4. U. Polimeno and M. Meo, "Understanding the effect of boundary conditions on damage identification process when using nonlinear elastic wave spectroscopy methods," International Journal of Nonlinear Mechanics, Vol. 43, No. 3, pp. 187-193, (2008) https://doi.org/10.1016/j.ijnonlinmec.2007.12.013
  5. P. A. Johnson, B. Zinsner and P. N. J. Rasolofosaon, "Resonance and elastic nonlinear phenomenon in rock," Journal of Geophysical Research, Vol. 101, No. B5, pp. 553-564 (1996)
  6. K. E-A. Van Den Abeele, A. Sutin., J. Carmeliet and P. A. Johnson, "Micro-damage diagnostics using nonlinear elastic wave spectroscopy," NDT&E International, Vol. 34, pp. 239-248 (2001) https://doi.org/10.1016/S0963-8695(00)00064-5
  7. I. Solodov, J. Wackerl, K. Pfleiderer and G. Busse, "Nonlinear self-modulation and subharmonic acoustic spectroscopy for damage detection and location," Applied Physics Letters, Vol, 84, No. 26, pp. 5386-5388 (2004) https://doi.org/10.1063/1.1767283
  8. K. E-A. Van Den Abeele, J. Carmeliet, J. A. Ten Cate and P. A. Johnson, "Nonlinear elastic wave spectroscopy(NEWS) techniques to discern material damage. Part II: Single mode nonlinear resonance acoustic spectroscopy," Res. Nondestr. Eval., Vol. 12, pp. 31-42 (2000) https://doi.org/10.1080/09349840009409647
  9. T. Meurer, J. Qu and L. J. Jacobs, "Wave propagation in nonlinear and hysteretic media - A numerical study," International Journal of Solids and Structures, Vol. 39, pp. 5585-5614 (2002) https://doi.org/10.1016/S0020-7683(02)00366-9
  10. K. R. McCall and R. A. Guyer, "Equation of state and wave propagation in hysteretic nonlinear elastic materials," Journal of Geophysical Research, Vol. 99, pp. 887-897 (1994)
  11. K. R. McCall and R. A. Guyer, "A new theoretical paradigm to describe hysteresis, discrete memory and nonlinear elastic wave propagation in rock," Nonlinear Process in Geophysics, Vol. 3, pp. 89-101 (1996) https://doi.org/10.5194/npg-3-89-1996
  12. I. D. Mayergoyz, "Mathematical models of hysteresis," IEEE Transactions on Magnetics, Vol. 22, No. 5, pp. 603-608 (1986) https://doi.org/10.1109/TMAG.1986.1064347
  13. J. W. Macki, N. Paolo and Z. Pietro, "Mathematical models for hysteresis," Society for Industrial and Applied Mathematics, Vol. 35, No. 1, pp. 94-123 (1993)
  14. K. Alexander and T. Eitan, "New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations," Journal of Computational Physics, Vol. 160, pp. 241-282 (2000) https://doi.org/10.1006/jcph.2000.6459
  15. Y. H. Choi, H. M. Kim, K. Y. Jhang and I. K. Park, "Application of non-linear acoustic effect for evaluation of degradation of 2.25Cr-1Mo steel," Journal of the Korean Society for Nondestructive Testing, Vol. 22, No. 2, pp. 170-176 (2002)
  16. Y. M. Cheong and D. H. Lee, "Detection of micro-crack using a nonlinear ultrasonic resonance parameters," Journal of the Korean Society for Nondestructive Testing, Vol. 32, No. 4, pp. 369-375 (2012) https://doi.org/10.7779/JKSNT.2012.32.4.369

Cited by

  1. Aircraft component defect monitoring by the use of patch magnetostrictive EMAT vol.20, pp.4, 2017, https://doi.org/10.1007/s12650-017-0427-5
  2. Assessment of Thermal Aging of Aluminum Alloy by Acoustic Nonlinearity Measurement of Surface Acoustic Waves vol.28, pp.1, 2017, https://doi.org/10.1080/09349847.2016.1261213