DOI QR코드

DOI QR Code

The molten KOH/NaOH wet chemical etching of HVPE-grown GaN

HVPE로 성장된 GaN의 용융 KOH/NaOH 습식화학에칭

  • Park, Jae Hwa (Division of Materials Science and Engineering, Hanyang University) ;
  • Hong, Yoon Pyo (Division of Materials Science and Engineering, Hanyang University) ;
  • Park, Cheol Woo (Division of Materials Science and Engineering, Hanyang University) ;
  • Kim, Hyun Mi (Division of Materials Science and Engineering, Hanyang University) ;
  • Oh, Dong Keun (Division of Materials Science and Engineering, Hanyang University) ;
  • Choi, Bong Geun (Division of Materials Science and Engineering, Hanyang University) ;
  • Lee, Seong Kuk (UNIMO Photron) ;
  • Shim, Kwang Bo (Division of Materials Science and Engineering, Hanyang University)
  • Received : 2014.06.10
  • Accepted : 2014.07.18
  • Published : 2014.08.31

Abstract

The hydride vapor phase epitaxy (HVPE) grown GaN samples to precisely measure the surface characteristics was applied to a molten KOH/NaOH wet chemical etching. The etching rate by molten KOH/NaOH wet chemical etching method was slower than that by conventional etching methods, such as phosphoric and sulfuric acid etching, which may be due to the formation of insoluble coating layer. Therefore, the molten KOH/NaOH wet chemical etching is a better efficient method for the evaluation of etch pits density. The grown GaN single crystals were characterized by using X-ray diffraction (XRD) and X-ray rocking curve (XRC). The etching characteristics and surface morphologies were studied by scanning electron microscopy (SEM). From etching results, the optimum etching condition that the etch pits were well independently separated in space and clearly showed their shape, was $410^{\circ}C$ and 25 min. The etch pits density obtained by molten KOH/NaOH wet chemical etching under optimum etching condition was around $2.45{\times}10^6cm^{-2}$, which is commercially an available materials.

수소화기상증착에피탁시로 성장된 GaN 단결정의 표면 특성을 정밀하게 측정하기 위해, 용융 KOH/NaOH 습식화학에칭법을 적용하였다. KOH/NaOH 습식화학에칭법에 에칭속도는 기존의 황산, 인산과 같은 etchant에 비해 느린데, 이는 불용성 코팅층의 형성에 의한 것이다. 따라서 이 방법으로 etch pits density를 더 효율적으로 평가할 수 있었다. 성장된 GaN 단결정을 XRD(X-Ray Diffraction), XRC(X-ray rocking curve)로 결정성을 분석하였으며, 에칭 특성과 표면 형상은 주자전자현미경을 이용하여 관찰하였다. 에칭 실험 결과 격자결함들이 독립적으로 잘 분리되어 있고 그들의 형태가 명확하게 나타나는 최적 에칭 조건은 $410^{\circ}C$, 25분이었다. 이 조건에서 얻은 결함밀도 값은 $2.45{\times}10^6cm^{-2}$이었으며, 이는 상업적으로 이용 가능 한 정도의 재료임을 확인할 수 있었다.

Keywords

References

  1. D. Ehrentraut and Z. Sistar, "Advances in bulk crystal growth of AlN and GaN", MRS Bull. 34 (2009) 259. https://doi.org/10.1557/mrs2009.76
  2. D.G. Zhao, D.S. Jiang, J.J. Zhu, H. Wang, Z.S. Liu, S.M. Zhang, Y.T. Wang, Q.J. Jia and H. Yang, "An experimental study about the influence of well thickness on the electroluminescence of InGaN/GaN multiple quantum wells", J. Alloys Compd. 489 (2010) 461. https://doi.org/10.1016/j.jallcom.2009.09.086
  3. A. Sakai, A. Kimura, H. Sunakawa and A. Usui, "Microstructure of GaN films on GaAs(100) substrates grown by hydride vapor-phase epitaxy", J. Crystal Growth 183 (1998) 49. https://doi.org/10.1016/S0022-0248(97)00412-0
  4. J.L. Weyher, H. Ashraf and P.R. Hageman, "Reduction of dislocation density in epitaxial GaN layers by overgrowth of defect-related etch pits", Appl. Phys. Lett. 95 (2009) 031913 : 1. https://doi.org/10.1063/1.3171928
  5. J. Zou and W.D. Xiang, "A-Plane GaN layer grown on (302) ($-LiAlO_2$ by MOCVD", J. Alloys Compd. 484 (2009) 622. https://doi.org/10.1016/j.jallcom.2009.05.006
  6. J. Chen, J.F. Wang, H. Wang, J.J. Zhu, S.M. Zhang, D.G. Zhao, D.S. Jiang, H. Yang, U. Jahn and K.H. Ploog, "Measurement of threading dislocation densities in GaN by wet chemical etching", Semicond. Sci. Technol. 21 (2006) 1229. https://doi.org/10.1088/0268-1242/21/9/004
  7. B. Heying, E.J. Tarsa, C.R. Elsass, P. Fini, S.P. Den-Baars and J.S. Speck, "Dislocation mediated surface morphology of GaN", J. Appl. Phys. 85 (1999) 6470. https://doi.org/10.1063/1.370150
  8. M. Barchuk, C. Roder, Y. Shashev, G. Lukin, M. Motylenko, J. Kortus, O. Patzold and D. Rafaja, "Correlation between the residual stress and the density of threading dislocations in GaN layers grown by hydride vapor phase epitaxy", J. Crystal Growth 386 (2014) 1. https://doi.org/10.1016/j.jcrysgro.2013.09.041
  9. H.C. Hsu, Y.K. Sua, S.H. Cheng, S.J. Huang, J.M. Cao and K.C. Chen, "Investigation of etch characteristics of non-polar GaN by wet chemical etching", Appl. Surf. Sci. 257 (2010) 1080. https://doi.org/10.1016/j.apsusc.2010.08.017
  10. C.C. Kao, Y.K. Su, C.L. Lin and J.J. Chen, "Enhanced luminescence of GaN-based light-emitting diodes by selective wet etching of GaN/sapphire interface using direct heteroepitaxy laterally overgrowth technique", Displays 32 (2011) 96. https://doi.org/10.1016/j.displa.2011.01.003
  11. J. Kang, Z. Li, Z. Liu, H. Li, Y. Zhao, Y. Tian, P. Ma, X. Yi and G. Wang, "Investigation of the wet-etching mechanism of Ga-polar AlGaN/GaN micro-pillars", J. Crystal Growth 386 (2014) 175. https://doi.org/10.1016/j.jcrysgro.2013.10.007
  12. D. Zhuang and J.H. Edgar, "Wet etching of GaN, AlN, and SiC: a review", Mater. Sci. Eng. R 48 (2005) 1. https://doi.org/10.1016/j.mser.2004.11.002
  13. H.H. Huang, H.Y. Zeng, C.L. Lee, S.C. Lee and W.I. Lee, "Extended microtunnels in GaN prepared by wet chemical etch", Appl. Phys. Lett. 89 (2006) 202115-1. https://doi.org/10.1063/1.2374841
  14. M. Hao, T. Egawa and H. Ishikawa, "Maskless lateral epitaxial over growth of GaN films on in situ etched sapphire substrates by metalorganic chemical vapor deposition", J. Crystal Growth 285 (2005) 466. https://doi.org/10.1016/j.jcrysgro.2005.09.001
  15. T.L. Chu, "Gallium Nitride Films", J. Electrochem. Soc. 118 (1971) 1200. https://doi.org/10.1149/1.2408280
  16. J.I. Pankove, "Electrolytic Etching of GaN", J. Electrochem. Soc. 119 (1972) 1118. https://doi.org/10.1149/1.2404410
  17. L. Zhang, Y. Sha, Y. Wu, X. Hao, X. Chen, S. Qu and X. Xu, "Characterization of dislocation etch pits in HVPE-grown GaN using different wet chemical etching methods", J. Crystal Growth 504 (2010) 186.
  18. D.K. Oh, S.Y. Bang, B.G. Choi, P. Maneeratanasarn, S.K. Lee, J.H. Chung, J.A.F. Freitas Jr. and K.B. Shim, "Surface morphology and optical property of thermally annealed GaN substrates", J. Crystal Growth 356 (2012) 22. https://doi.org/10.1016/j.jcrysgro.2012.06.056
  19. D.K. Oh, B.G. Choi, S.H. Kang, S.Y. Kim, S.A. Kim, S.K. Lee, J.H. Chung, K.H. Kim and K.B. Shim, "Surface morphology variation during wet etching of GaN epilayer grown by HVPE", J. Korean Cryst. Growth Cryst. Technol. 22(6) (2012) 261. https://doi.org/10.6111/JKCGCT.2012.22.6.261
  20. W. Luo, J. Wu, J. Goldsmith, Y. Du, T. Yu, Z. Yang and G. Zhang, "The growth of high-quality and self-separation GaN thick-films by hydride vapor phase epitaxy", J. Crystal Growth 340 (2012) 18. https://doi.org/10.1016/j.jcrysgro.2011.11.037
  21. J.L. Weyher, S. Lazar, L. Macht, Z. Liliental-Weber, R.J. Molnar, S. Muller, V.G.M. Sivel, G. Nowak and I. Grzegory, "Orthodox etching of HVPE-grown GaN", J. Crystal Growth 305 (2007) 384. https://doi.org/10.1016/j.jcrysgro.2007.03.030
  22. D. Spiteri, J.W. Pomeroy and M. Kuball, "Influence of microstructural defects on the thermal conductivity of GaN : A molecular dynamics study", Phys. Status Solidi B 250(8) (2013) 1541. https://doi.org/10.1002/pssb.201349052
  23. D. Peng, Y. Feng and H. Niu, "Effects of surface treatment for sapphire substrate on gallium nitride films", J. Alloys Compd. 476 (2009) 629. https://doi.org/10.1016/j.jallcom.2008.09.064