DOI QR코드

DOI QR Code

Changes of discharge voltage of plate-type sodium sulfur batteries in the early charge/discharge cycles

평판형 나트륨 유황 전지의 초기 충방전시 방전전압 변화

  • 김성인 (한국과학기술연구원 에너지융합연구센터) ;
  • 김헌태 (한국과학기술연구원 에너지융합연구센터) ;
  • 최희락 (부경대학교 재료공학과) ;
  • 임산수대 (화인테크 연구개발부) ;
  • 양기덕 (화인테크 연구개발부) ;
  • 범진형 (화인테크 연구개발부) ;
  • 김창삼 (한국과학기술연구원 에너지융합연구센터)
  • Received : 2014.06.12
  • Accepted : 2014.07.11
  • Published : 2014.08.31

Abstract

The sodium-sulfur batteries which operate at $350^{\circ}C$ have been mainly used in the field of energy storage system. This batteries consist of liquid sodium anode, sulfur cathode and ${\beta}^{{\prime}{\prime}}$-alumina solid electrolyte. The conditioning process for stabilization of the batteries is essential since the cells show considerable fluctuation of discharge voltage at the beginning of discharge/charge cycles. It is found that one of the reasons of the fluctuation is the gradual change of contact area between molten sodium and solid electrolyte.

나트륨 유황 전지는 $350^{\circ}C$ 이상의 고온에서 작동하는 대용량 전지로 에너지 저장 시스템에 주로 사용된다. 전지는 음극 액체 나트륨과 양극 액체 유황 그리고 고체 전해질 베타 알루미나(${\beta}^{{\prime}{\prime}}$-alumina)로 구성되어 있다. 이 전지는 초기충방전 사이클에서 상당한 전압변화를 보이기 때문에 전지의 안정화를 위해 컨디셔닝 과정이 필요하다. 실험 결과 전지 전압 변화의 주요한 원인 중의 하나가 액체 나트륨과 고체 전해질과의 접촉 면적이 변하기 때문인 것을 알았다.

Keywords

References

  1. B. Dunn, H. Kamath and J.-M. Tarascon, "Electrical energy storage for the grid: A battery of choices", Science 334 (2011) 928. https://doi.org/10.1126/science.1212741
  2. M.-I. Jeong and C.-J. Choi, "Passivation properties of SiNx and SiO2 thin films for the application of crystalline Si solar cells", J. Korean Cryst. Growth Cryst. Technol. 24 (2014) 41. https://doi.org/10.6111/JKCGCT.2014.24.1.041
  3. Inyu Park, "Fabrication of Sm0.5Sr0.5CoO3 cathode films for intermediate temperature SOFCs by electrostatic spray deposition" J. Korean Cryst. Growth Cryst. Technol. 20 (2010) 69. https://doi.org/10.6111/JKCGCT.2010.20.2.069
  4. Z. Wen, Y. Hu, X. Wu, J. Han and Z. Gu, "Main challenges for high performance NAS battery: Materials and interfaces", Advanced Functional Materials 23 (2013) 1005. https://doi.org/10.1002/adfm.201200473
  5. Z. Wen, J. Cao, Z. Gu, X. Xu, F. Zhang and Z. Lin, "Research on sodium sulfur battery for energy storage", Solid State Ionics 179 (2008) 1697. https://doi.org/10.1016/j.ssi.2008.01.070
  6. Z. Yang, J. Zhang, M.C. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon and J. Liu, "Electrochemical energy storage for green grid", Chemical Reviews 111 (2011) 3577. https://doi.org/10.1021/cr100290v
  7. T. Oshima, M. Kajita and A. Okuno, "Development of sodium-sulfur batteries", International Journal of Applied Ceramic Technology 1 (2004) 269.
  8. L. Viswanathan and A.V. Virkar, "Wetting characteristics of sodium on beta-alumina and on nasicon", Journal of Materials Science 17 (1982) 753. https://doi.org/10.1007/BF00540372
  9. A. Hooper, "A study of the electrical properties of single-crystal and polycrystalline ${\beta}$-alumina using complex plane analysis", Journal of Physics D: Applied Physics 10 (1977) 1487. https://doi.org/10.1088/0022-3727/10/11/013
  10. J.-K. Park, "Principles and applications of lithium secondary battries" (HongRung, Seoul, 2010) p. 19.
  11. Y. Hu, Z. Wen, X. Wu and J. Jin, "Low-cost shape-control synthesis of porous carbon film on ${\beta}$"-alumina ceramics for Na-based battery application", Journal of Power Sources 219 (2012) 1. https://doi.org/10.1016/j.jpowsour.2012.07.025