DOI QR코드

DOI QR Code

A Rapid and Efficient Method for Construction of an Infectious Clone of Tomato yellow leaf curl virus

  • Bang, Bongjun (Department of Microbiology, Pusan National University) ;
  • Lee, Jongyun (Department of Microbiology, Pusan National University) ;
  • Kim, Sunyoung (Department of Microbiology, Pusan National University) ;
  • Park, Jungwook (Department of Microbiology, Pusan National University) ;
  • Nguyen, Thao Thi (Department of Microbiology, Pusan National University) ;
  • Seo, Young-Su (Department of Microbiology, Pusan National University)
  • Received : 2014.03.26
  • Accepted : 2014.05.08
  • Published : 2014.09.01

Abstract

Tomato yellow leaf curl virus (TYLCV), a member of the genus Begomovirus, is responsible for one of the most devastating viral diseases in tomato-growing countries and is becoming a serious problem in many subtropical and tropical countries. The climate in Korea is getting warmer and developing subtropical features in response to global warming. These changes are being accompanied by TYLCV, which is now becoming a large problem in the Korean tomato industry. The most effective way to reduce damage caused by TYLCV is to breed resistant varieties of tomatoes. To accomplish this, it is necessary to establish a simple inoculation technique for the efficient evaluation of resistance to TYLCV. Here, we present the rolling circle amplification (RCA) method, which employs a bacteriophage using phi-29 DNA polymerase for construction of infectious TYLCV clones. The RCA method is simple, does not require sequence information for cloning, and is less expensive and time consuming than conventional PCR based-methods. Furthermore, RCA-based construction of an infectious clone can be very useful to other emerging and unknown geminiviruses in Korea.

Keywords

References

  1. Brown, J. K. and Brid, J. 1992. Whitefly-transmitted Geminiviruses and associated disorders in the Americas and the Caribbean basin. Plant Dis. 76:220-225. https://doi.org/10.1094/PD-76-0220
  2. Czosnek, H., Ber, R., Antignus, Y., Cohen, S., Navot, N. and Zamir, D. 1988. Isolation of Tomato yellow leaf curl virus, a geminivirus. Phytopathology 78:508-512. https://doi.org/10.1094/Phyto-78-508
  3. Dry, I. B., Rigden, J. E., Krake, L. R., Mullineaux, P. M. and Rezaian, M. A. 1993. Nucleotide sequence and genome organization of tomato leaf curl geminivirus. J. Gen. Virol. 74:147-151. https://doi.org/10.1099/0022-1317-74-1-147
  4. de Felippes, F. F. and Weigel, D. 2010. Transient assays for the analysis of miRNA processing and function. Methods Mol. Biol. 592:255-264. https://doi.org/10.1007/978-1-60327-005-2_17
  5. Ferreira, Pde. T., Lemos, T. O., Nagata, T. and Inoue-Nagata, A. K. 2008. One-step cloning approach for construction of agroinfectious begomovirus clones. J. Virol. Methods 147:351-354. https://doi.org/10.1016/j.jviromet.2007.10.001
  6. Gronenborn, B. 2004. Nanoviruses: genome organisation and protein function. Vet. Microbiol. 98:103-109. https://doi.org/10.1016/j.vetmic.2003.10.015
  7. Haible, D., Kober, S. and Jeske, H. 2006. Rolling circle amplification revolutionizes diagnosis and genomics of geminiviruses. J. Virol. Methods 135:9-16. https://doi.org/10.1016/j.jviromet.2006.01.017
  8. Harrison, B. D., Muniyappa, V., Swanson, M. M., Roberts, I. M. and Robinson, D. J. 1991. Recognition and differentiation of seven whitefly-transmitted geminiviruses from India, and their relationships to African cassava mosaic and Thailand mung bean yellow mosaic viruses. Ann. Appl. Biol. 118:299-308. https://doi.org/10.1111/j.1744-7348.1991.tb05630.x
  9. Inoue-Nagata, A. K., Albuquerque, L. C., Rocha, W. B. and Nagata T. 2004. A simple method for cloning the complete begomovirus genome using the bacteriophage phi29 DNA polymerase. J. Virol. Methods 116:209-211. https://doi.org/10.1016/j.jviromet.2003.11.015
  10. Kheyr-Pour, A., Bendahmane, M., Matzeit, V., Accotto, G. P., Crespi, S. and Gronenborn, B. 1991. Tomato yellow leaf curl virus from Sardinia is a whitefly-transmitted monopartite geminivirus. Nucleic Acids Res. 19:6763-6769. https://doi.org/10.1093/nar/19.24.6763
  11. Lapidot, M. and Friedmann, M. 2002. Breeding for resistance to whitefly-transmitted geminiviruses. Ann. Appl. Biol. 140:109-127. https://doi.org/10.1111/j.1744-7348.2002.tb00163.x
  12. Lee, H., Song, W., Kwak, H. R., Kim, J. D., Park, J., Auh, C. K., Kim, D. H., Lee, K. Y., Lee, S. and Choi, H. S. 2010. Phylogenetic analysis and inflow route of Tomato yellow leaf curl virus (TYLCV) and Bemisia tabaci in Korea. Mol. Cells 30:467-476. https://doi.org/10.1007/s10059-010-0143-7
  13. Mankertz, A., Caliskan, R., Hattermann, K., Hillenbrand, B., Kurzendoerfer, P., Mueller, B., Schmitt, C., Steinfeldt, T. and Finsterbusch, T. 2004. Molecular biology of Porcine circovirus: analyses of gene expression and viral replication. Vet. Microbiol. 98:81-88. https://doi.org/10.1016/j.vetmic.2003.10.014
  14. Nakhla, M. K., Maxwell, D. P., Martinez, R. T., Carvalho, M. G. and Gilbertson, R. L. 1994. Widespread occurrence of the eastern Mediterranean strain of Tomato yellow leaf curl geminivirus in tomatoes in the Dominican Republic. Plant Dis. 78:926.
  15. Patel, V., Roja, M. R., Paplomatas, E. J. and Gilbertson, R. L. 1993. Cloning biologically active geminivirus DNA using PCR and overlapping primers. Nucleic Acids Res. 21:1325-1326. https://doi.org/10.1093/nar/21.5.1325
  16. Rochester, D. E., Kositratana, W. and Beachy, R. N. 1990. Systemic movement and symptom production following agroinoculation with a single DNA of Tomato yellow leaf curl geminivirus (Thailand). Virology 178:520-526. https://doi.org/10.1016/0042-6822(90)90349-V
  17. Salati, R., Nahkla, M. K., Rojas, M. R., Guzman, P., Jaquez, J., Maxwell, D. P. and Gilbertson, R. L. 2002. Tomato yellow leaf curl virus in the Dominican Republic: Characterization of an Infectious Clone, Virus Monitoring in Whiteflies, and Identification of Reservoir Hosts. Phytopathology 92:487-496. https://doi.org/10.1094/PHYTO.2002.92.5.487
  18. Urbino, C., Thebaud, G., Granier, M., Blanc, S. and Peterschmitt, M. 2008. A novel cloning strategy for isolating, genotyping and phenotyping genetic variants of geminiviruses. Virol. J. 5:135. https://doi.org/10.1186/1743-422X-5-135
  19. Wyatt, S. D. and Brown, J. K. 1996. Detection of subgroup III geminivirus isolates in leaf extracts by degenerate primers and polymerase chain reaction. Phytopathology 86:1288-1293. https://doi.org/10.1094/Phyto-86-1288
  20. Wu, C. Y., Lai, Y. C., Lin, N. S., Hsu, Y. H., Tsai. H. T., Liao, J. Y. and Hu, C. C. 2008. A simplified method of constructing infectious clones of begomovirus employing limited restriction enzyme digestion of products of rolling circle amplification. J. Virol. Methods 147:355-359. https://doi.org/10.1016/j.jviromet.2007.10.002
  21. Yongping, Z., Weimin, Z., Huimei, C., Yang, Q., Kun, S., Yanhui, W., Longying, Z., Li, Y. and Zhang, H. 2008. Molecular identification and the complete nucleotide sequence of TYLCV isolate from Shanghai of China. Virus Genes 36:547-551. https://doi.org/10.1007/s11262-008-0226-0

Cited by

  1. Comparative Analyses of Tomato yellow leaf curl virus C4 Protein-Interacting Host Proteins in Healthy and Infected Tomato Tissues vol.32, pp.5, 2016, https://doi.org/10.5423/PPJ.FT.08.2016.0165
  2. CRISPR/Cas9-mediated viral interference in plants vol.16, pp.1, 2015, https://doi.org/10.1186/s13059-015-0799-6
  3. Biotechnological Advancements and Begomovirus Management in Okra (Abelmoschus esculentus L.): Status and Perspectives vol.8, 2017, https://doi.org/10.3389/fpls.2017.00360
  4. Barcoding of Plant Viruses with Circular Single-Stranded DNA Based on Rolling Circle Amplification vol.10, pp.9, 2018, https://doi.org/10.3390/v10090469