DOI QR코드

DOI QR Code

Pseudorecombination between Two Distinct Strains of Cucumber mosaic virus Results in Enhancement of Symptom Severity

  • Phan, Mi Sa Vo (Department of Agricultural Biotechnology and Plant Genomics and Breeding Institute, Seoul National University) ;
  • Seo, Jang-Kyun (Crop Protection Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Choi, Hong-Soo (Crop Protection Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Lee, Su-Heon (Department of Applied Biology, Kyungpook National University) ;
  • Kim, Kook-Hyung (Department of Agricultural Biotechnology and Plant Genomics and Breeding Institute, Seoul National University)
  • Received : 2014.04.10
  • Accepted : 2014.05.08
  • Published : 2014.09.01

Abstract

Recently, a Cucumber mosaic virus (CMV) strain, named as CMV-209, was isolated from Glycine soja. In this study, symptom expression of CMV-209 was analyzed in detail in Nicotiana benthamiana by comparing with that of CMV-Fny, which is a representative strain of CMV. Using infectious cDNA clones of CMV strains 209 and Fny, symptom expression of various pseudorecombinants between these two strains were examined in the early and late infection stages. In the early infection stage, the pseudorecombinants containing Fny-RNA2 induced stunting and leaf distortion on the newly emerged leaves whereas the pseudorecombinants containing 209-RNA2 caused no obvious symptoms. In the late infection stage, the pseudorecombinants containing 209-RNA1 and Fny-RNA2 induced severe leaf distortion and stunting, while CMV-209 induced mild symptom and CMV-Fny caused typical mosaic, general stunting, and leaf distortion symptoms, indicating that RNA 2 encodes a symptom determinant(s) of CMV, which is capable of enhancing symptoms. Furthermore, our results support the possibility that natural recombination between compatible viruses can result in emergence of novel viruses causing severe damages in crop fields.

Keywords

References

  1. Bonnet, J., Fraile, A., Sacristan, S., Malpica, J. M. and Garcia- Arenal, F. 2005. Role of recombination in the evolution of natural populations of Cucumber mosaic virus, a tripartite RNA plant virus. Virology 332:359-368. https://doi.org/10.1016/j.virol.2004.11.017
  2. Brigneti, G., Voinnet, O., Li, W. X., Ji, L. H., Ding, S. W. and Baulcombe, D. C. 1998. Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. EMBO J. 17:6739-6746. https://doi.org/10.1093/emboj/17.22.6739
  3. Chen, Y., Chen, J., Zhang, H., Tang, X. and Du, Z. 2007. Molecular evidence and sequence analysis of a natural reassortant between Cucumber mosaic virus subgroup IA and II strains. Virus Genes 35:405-413. https://doi.org/10.1007/s11262-007-0094-z
  4. Davies, C. and Symons, R. H. 1988. Further implications for the evolutionary relationships between tripartite plant viruses based on Cucumber mosaic virus RNA 3. Virology 165:216-224. https://doi.org/10.1016/0042-6822(88)90675-7
  5. Ding, B., Li, Q., Nguyen, L., Palukaitis, P. and Lucas, W. J. 1995a. Cucumber mosaic virus 3a protein potentiates cellto- cell trafficking of CMV RNA in tobacco plants. Virology 207:345-353. https://doi.org/10.1006/viro.1995.1093
  6. Ding, S.-W., Anderson, B. J., Haase, H. R. and Symons, R. H. 1994. New overlapping gene encoded by the Cucumber mosaic virus genome. Virology 198:593-601. https://doi.org/10.1006/viro.1994.1071
  7. Ding, S.-W., Li, W.-X. and Symons, R. 1995b. A novel naturally occurring hybrid gene encoded by a plant RNA virus facilitates long distance virus movement. EMBO J. 14:5762-5772.
  8. Ding, S.-W., Shi, B.-J., Li, W.-X. and Symons, R. H. 1996. An interspecies hybrid RNA virus is significantly more virulent than either parental virus. Proc. Natl. Acad. Sci. USA 93:7470-7474. https://doi.org/10.1073/pnas.93.15.7470
  9. Diveki, Z., Salanki, K. and Balazs, E. 2004. The necrotic pathotype of the Cucumber mosaic virus (CMV) Ns strain is solely determined by amino acid 461 of the 1a protein. Mol. Plant- Microbe Interact. 17:837-845. https://doi.org/10.1094/MPMI.2004.17.8.837
  10. Du, Z.-Y., Chen, F.-F., Liao, Q.-S., Zhang, H.-R., Chen, Y.-F. and Chen, J.-S. 2007. 2b ORFs encoded by subgroup IB strains of Cucumber mosaic virus induce differential virulence on Nicotiana species. J. Gen. Virol. 88:2596-2604. https://doi.org/10.1099/vir.0.82927-0
  11. Du, Z., Chen, F., Zhao, Z., Liao, Q., Palukaitis, P. and Chen, J. 2008. The 2b protein and the C-terminus of the 2a protein of Cucumber mosaic virus subgroup I strains both play a role in viral RNA accumulation and induction of symptoms. Virology 380:363-370. https://doi.org/10.1016/j.virol.2008.07.036
  12. Fraile, A., Alonso-Prados, J. L., Aranda, M. A., Bernal, J. J., Malpica, J. M. and Garcia-Arenal, F. 1997. Genetic exchange by recombination or reassortment is infrequent in natural populations of a tripartite RNA plant virus. J. Virol. 71:934-940.
  13. Fulton, J. P. 1950. Studies on strains of cucumber virus 1 from spinach. Phytopathology 40:729-736.
  14. Gorbalenya, A. E., Koonin, E. V., Donchenko, A. P. and Blinov, V. M. 1989. Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. Nucleic Acids Res. 17:4713-4730. https://doi.org/10.1093/nar/17.12.4713
  15. Goto, K., Kobori, T., Kosaka, Y., Natsuaki, T. and Masuta, C. 2007. Characterization of silencing suppressor 2b of Cucumber mosaic virus based on examination of its small RNAbinding abilities. Plant Cell Physiol. 48:1050-1060. https://doi.org/10.1093/pcp/pcm074
  16. Habili, N. and Symons, R. H. 1989. Evolutionary relationship between luteoviruses and other RNA plant viruses based on sequence motifs in their putative RNA polymerases and nucleic acid helicases. Nucleic Acids Res. 17:9543-9555. https://doi.org/10.1093/nar/17.23.9543
  17. Hayes, R. J. and Buck, K. W. 1990. Complete replication of a eukaryotic virus RNA in vitro by a purified RNA-dependent RNA polymerase. Cell 63:363-368. https://doi.org/10.1016/0092-8674(90)90169-F
  18. Hodgman, T. 1988. A new superfamily of replicative proteins. Nature 333:22-23.
  19. Jacquemond, M. 2012. Cucumber mosaic virus. Adv. Virus Res 84:439-504. https://doi.org/10.1016/B978-0-12-394314-9.00013-0
  20. Kaplan, I. B., Shintaku, M. H., Li, Q., Zhang, L., Marsh, L. E. and Palukaitis, P. 1995. Complementation of virus movement in transgenic tobacco expressing the Cucumber mosaic virus 3a gene. Virology 209:188-199. https://doi.org/10.1006/viro.1995.1242
  21. Lewsey, M., Robertson, F. C., Canto, T., Palukaitis, P. and Carr, J. P. 2007. Selective targeting of miRNA-regulated plant development by a viral counter-silencing protein. Plant J. 50:240-252. https://doi.org/10.1111/j.1365-313X.2007.03042.x
  22. Lewsey, M., Surette, M., Robertson, F. C., Ziebell, H., Choi, S. H., Ryu, K. H., Canto, T., Palukaitis, P., Payne, T. and Walsh, J. A. 2009. The role of the Cucumber mosaic virus 2b protein in viral movement and symptom induction. Mol. Plant-Microbe Interact. 22:642-654. https://doi.org/10.1094/MPMI-22-6-0642
  23. Lin, H.-X., Rubio, L., Smythe, A. B. and Falk, B. W. 2004. Molecular population genetics of Cucumber mosaic virus in California: evidence for founder effects and reassortment. J. Virol. 78:6666-6675. https://doi.org/10.1128/JVI.78.12.6666-6675.2004
  24. Lucy, A. P., Guo, H. S., Li, W. X. and Ding, S. W. 2000. Suppression of post-transcriptional gene silencing by a plant viral protein localized in the nucleus. EMBO J. 19:1672-1680. https://doi.org/10.1093/emboj/19.7.1672
  25. Maoka, T., Hayano, Y. S., Iwasaki, M., Yoshida, K. and Masuta, C. 2010. Mixed infection in tomato to ensure frequent generation of a natural reassortant between two subgroups of Cucumber mosaic virus. Virus Genes 40:148-150. https://doi.org/10.1007/s11262-009-0414-6
  26. Mi, S., Durbin, R., Huang, H. V., Rice, C. M. and Stollar, V. 1989. Association of the Sindbis virus RNA methyltransferase activity with the nonstructural protein nsP1. Virology 170:385-391. https://doi.org/10.1016/0042-6822(89)90429-7
  27. Mi, S. and Stollar, V. 1991. Expression of sindbis virus nsP1 and methyltransferase activity in Escherichia coli. Virology 184:423-427. https://doi.org/10.1016/0042-6822(91)90862-6
  28. Morse, S. S. 1992. Evolving views of viral evolution: towards an evolutionary biology of viruses. Hist. Philos. Life Sci. 14:215-248.
  29. Palukaitis, P. and Garcia-Arenal, F. 2003. Cucumoviruses. Adv. Virus Res. 62:241-323. https://doi.org/10.1016/S0065-3527(03)62005-1
  30. Palukaitis, P., Roossinck, M. J., Dietzgen, R. G. and Francki, R. 1992. Cucumber mosaic virus. Adv. Virus Res. 41:281-348. https://doi.org/10.1016/S0065-3527(08)60039-1
  31. Rao, A. and Francki, R. 1982. Distribution of determinants for symptom production and host range on the three RNA components of Cucumber mosaic virus. J. Gen. Virol. 61:197-205. https://doi.org/10.1099/0022-1317-61-2-197
  32. Roossinck, M. J. 2002. Evolutionary history of Cucumber mosaic virus deduced by phylogenetic analyses. J. Virol. 76:3382-3387. https://doi.org/10.1128/JVI.76.7.3382-3387.2002
  33. Rozanov, M. N., Koonin, E. V. and Gorbalenya, A. E. 1992. Conservation of the putative methyltransferase domain: a hallmark of the 'Sindbis-like'supergroup of positive-strand RNA viruses. J. Gen. Virol. 73:2129-2134. https://doi.org/10.1099/0022-1317-73-8-2129
  34. Schwinghamer, M. W. and Symons, R. H. 1975. Fractionation of cucumber mosaic virus RNA and its translation in a wheat embryo cell-free system. Virology 63:252-262. https://doi.org/10.1016/0042-6822(75)90389-X
  35. Seo, J.-K., Kwon, S.-J., Choi, H.-S. and Kim, K.-H. 2009. Evi dence for alternate states of Cucumber mosaic virus replicase assembly in positive-and negative-strand RNA synthesis. Virology 383:248-260. https://doi.org/10.1016/j.virol.2008.10.033
  36. Shi, B.-J., Palukaitis, P. and Symons, R. H. 2002. Differential virulence by strains of Cucumber mosaic virus is mediated by the 2b gene. Mol. Plant-Microbe Interact. 15:947-955. https://doi.org/10.1094/MPMI.2002.15.9.947
  37. Shintaku, M. 1991. Coat protein gene sequences of two Cucumber mosaic virus strains reveal a single amino acid change correlating with chlorosis induction. J. Gen. Virol. 72:2587-2589. https://doi.org/10.1099/0022-1317-72-10-2587
  38. Shintaku, M. H., Zhang, L. and Palukaitis, P. 1992. A single amino acid substitution in the coat protein of Cucumber mosaic virus induces chlorosis in tobacco. Plant Cell 4:751-757. https://doi.org/10.1105/tpc.4.7.751
  39. Soards, A. J., Murphy, A. M., Palukaitis, P. and Carr, J. P. 2002. Virulence and differential local and systemic spread of Cucumber mosaic virus in tobacco are affected by the CMV 2b protein. Mol. Plant-Microbe Interact. 15:647-653. https://doi.org/10.1094/MPMI.2002.15.7.647
  40. Suzuki, M., Kuwata, S., Masuta, C. and Takanami, Y. 1995. Point mutations in the coat protein of Cucumber mosaic virus affect symptom expression and virion accumulation in tobacco. J. Gen. Virol. 76:1791-1799. https://doi.org/10.1099/0022-1317-76-7-1791
  41. Szilassy, D., Salanki, K. and Balazs, E. 1999. Stunting induced by cucumber mosaic cucumovirus-infected Nicotiana glutinosa is determined by a single amino acid residue in the coat protein. Mol. Plant-Microbe Interact. 12:1105-1113. https://doi.org/10.1094/MPMI.1999.12.12.1105
  42. Takanami, Y. 1981. A striking change in symptoms on Cucumber mosaic virus-infected tobacco plants induced by a satellite RNA. Virology 109:120-126. https://doi.org/10.1016/0042-6822(81)90476-1
  43. Troutman, J. L. and Fulton, R. W. 1958. Resistance in tobacco to Cucumber mosaic virus. Virology 6:303-316. https://doi.org/10.1016/0042-6822(58)90084-9
  44. Vo Phan, M. S., Seo, J.-K., Choi, H.-S., Lee, S.-H. and Kim, K.-H. 2014. Molecular and biological characterization of an isolate of Cucumber mosaic virus from Glycine soja by generating its infectious full-genome cDNA clones. Plant Pathol. J. http://dx.doi.org/10.5423/PPJ.OA.02.2014.0014.
  45. White, P. S., Morales, F. and Roossinck, M. J. 1995. Interspecific reassortment of genomic segments in the evolution of cucumoviruses. Virology 207:334-337. https://doi.org/10.1006/viro.1995.1088
  46. Xu, A., Zhao, Z., Chen, W., Zhang, H., Liao, Q., Chen, J., Carr, J. P. and Du, Z. 2013. Self-interaction of the Cucumber mosaic virus 2b protein plays a vital role in the suppression of RNA silencing and the induction of viral symptoms. Mol. Plant Pathol. 14:803-812. https://doi.org/10.1111/mpp.12051
  47. Zhang, L., Handa, K. and Palukaitis, P. 1994. Mapping local and systemic symptom determinants of Cucumber mosaic cucumovirus in tobacco. J. Gen. Virol. 75:3185-3191. https://doi.org/10.1099/0022-1317-75-11-3185
  48. Ziebell, H., Payne, T., Berry, J. O., Walsh, J. A. and Carr, J. P. 2007. A cucumber mosaic virus mutant lacking the 2b counter- defence protein gene provides protection against wild-type strains. J. Gen. Virol. 88:2862-2871. https://doi.org/10.1099/vir.0.83138-0