DOI QR코드

DOI QR Code

Kinetic Characterization and Molecular Modeling of $NAD(P)^+$-Dependent Succinic Semialdehyde Dehydrogenase from Bacillus subtilis as an Ortholog YneI

  • Park, Seong Ah (Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan) ;
  • Park, Ye Song (Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan) ;
  • Lee, Ki Seog (Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan)
  • Received : 2014.02.25
  • Accepted : 2014.05.06
  • Published : 2014.07.28

Abstract

Succinic semialdehyde dehydrogenase (SSADH) catalyzes the oxidation of succinic semialdehyde (SSA) into succinic acid in the final step of ${\gamma}$-aminobutyric acid degradation. Here, we characterized Bacillus subtilis SSADH (BsSSADH) regarding its cofactor discrimination and substrate inhibition. BsSSADH showed similar values of the catalytic efficiency ($k_{ca}t/K_m$) in both $NAD^+$ and $NADP^+$ as cofactors, and exhibited complete uncompetitive substrate inhibition at higher SSA concentrations. Further analyses of the sequence alignment and homology modeling indicated that the residues of catalytic and cofactor-binding sites in other SSADHs were highly conserved in BsSSADH.

Keywords

References

  1. Ahn JW, Kim YG, Kim KJ. 2010. Crystal structure of nonredox regulated SSADH from Escherichia coli. Biochem. Biophys. Res. Commun. 392: 106-111. https://doi.org/10.1016/j.bbrc.2010.01.014
  2. Arnold K, Bordoli L, Kopp J, Schwede T. 2006. The SWISSMODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22: 195-201. https://doi.org/10.1093/bioinformatics/bti770
  3. Aronson JN, Borris DP, Doerner JF, Akers E. 1975. Gammaaminobutyric acid pathway and modified tricarboxylic acid cycle activity during growth and sporulation of Bacillus thuringiensis. Appl. Microbiol. 30: 489-492.
  4. Benkert P, Biasini M, Schwede T. 2011. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27: 343-350. https://doi.org/10.1093/bioinformatics/btq662
  5. Bown AW, Shelp BJ. 1997. The metabolism and functions of $\gamma$-aminobutyric acid. Plant Physiol. 115: 1-5. https://doi.org/10.1104/pp.115.1.1
  6. Burton RL, Chen S, Xu XL, Grant GA. 2007. A novel mechanism for substrate inhibition in Mycobacterium tuberculosis D-3-phosphoglycerate dehydrogenase. J. Biol. Chem. 282: 31517- 31524. https://doi.org/10.1074/jbc.M704032200
  7. Chambliss KL, Caudle DL, Hinson DD, Moomaw CR, Slaughter CA, Jakobs C, Gibson KM. 1995. Molecular cloning of the mature NAD(+)-dependent succinic semialdehyde dehydrogenase from rat and human. cDNA isolation, evolutionary homology, and tissue expression. J. Biol. Chem. 270: 461-467. https://doi.org/10.1074/jbc.270.1.461
  8. Cleland WW. 1963. Computer programmes for processing enzyme kinetic data. Nature 198: 463-465. https://doi.org/10.1038/198463a0
  9. Fait A, Fromm H, Walter D, Galili G, Fernie AR. 2008. Highway or byway: the metabolic role of the GABA shunt in plants. Trends Plant Sci. 13: 14-19.
  10. Fuhrer T, Chen L, Sauer U, Vitkup D. 2007. Computational prediction and experimental verification of the gene encoding the $NAD^+$/$NADP^+$-dependent succinate semialdehyde dehydrogenase in Escherichia coli. J. Bacteriol. 189: 8073-8078. https://doi.org/10.1128/JB.01027-07
  11. Gouet P, Robert X, Courcelle E. 2003. ESPript/ENDscript: extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Res. 31: 3320- 3323. https://doi.org/10.1093/nar/gkg556
  12. Jakoby WB, Scott EM. 1959. Aldehyde oxidation. III. Succinic semialdehyde dehydrogenase. J. Biol. Chem. 234: 937-940.
  13. Kriegstein AR. 2005. GABA puts the brake on stem cells. Nat. Neurosci. 8: 1132-1133. https://doi.org/10.1038/nn0905-1132
  14. Langendorf CG, Key TL, Fenalti G, Kan WT, Buckle AM, Caradoc-Davies T, et al. 2010. The X-ray crystal structure of Escherichia coli succinic semialdehyde dehydrogenase; structural insights into $NADP^+$/enzyme interactions. PLoS One 5: e9280. https://doi.org/10.1371/journal.pone.0009280
  15. Lineweaver H, Burk D. 1934. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56: 658-666. https://doi.org/10.1021/ja01318a036
  16. Skinner MA, Cooper RA. 1982. An Escherichia coli mutant defective in the NAD-dependent succinate semialdehyde dehydrogenase. Arch. Microbiol. 132: 270-275. https://doi.org/10.1007/BF00407964
  17. Tenover FC. 2006. Mechanisms of antimicrobial resistance in bacteria. Am. J. Med. 119: S3-S10.
  18. Wang J, Araki T, Ogawa T, Matsuoka M, Fukuda H. 1999. A method of graphically analyzing substrate-inhibition kinetics. Biotechnol. Bioeng. 62: 402-411. https://doi.org/10.1002/(SICI)1097-0290(19990220)62:4<402::AID-BIT3>3.0.CO;2-V
  19. Wright SK, Viola RE. 1998. Evaluation of methods for the quantitation of cysteines in proteins. Anal. Biochem. 265: 8-14.
  20. Yuan Z, Yin B, Wei D, Yuan YR. 2013. Structural basis for cofactor and substrate selection by cyanobacterium succinic semialdehyde dehydrogenase. J. Struct. Biol. 182: 125-135. https://doi.org/10.1016/j.jsb.2013.03.001
  21. Zheng H, Beliavsky A, Tchigvintsev A, Brunzelle JS, Brown G, Flick R, et al. 2013. Structure and activity of the $NAD(P)^+$- dependent succinate semialdehyde dehydrogenase YneI from Salmonella typhimurium. Proteins 81: 1031-1041. https://doi.org/10.1002/prot.24227

Cited by

  1. Kinetic and Structural Characterization for Cofactor Preference of Succinic Semialdehyde Dehydrogenase from Streptococcus pyogenes vol.37, pp.10, 2014, https://doi.org/10.14348/molcells.2014.0162
  2. Identification of suitable reference genes during the formation of chlamydospores in Clonostachys rosea 67‐1 vol.6, pp.5, 2014, https://doi.org/10.1002/mbo3.505
  3. Selective determination of the catalytic cysteine pKa of two‐cysteine succinic semialdehyde dehydrogenase from Acinetobacter baumannii using burst kinetics and enzyme adduct formation vol.285, pp.13, 2014, https://doi.org/10.1111/febs.14497
  4. Kinetic and structural insights into enzymatic mechanism of succinic semialdehyde dehydrogenase from Cyanothece sp. ATCC51142 vol.15, pp.9, 2020, https://doi.org/10.1371/journal.pone.0239372