DOI QR코드

DOI QR Code

A Novel Esterase from a Marine Metagenomic Library Exhibiting Salt Tolerance Ability

  • Fang, Zeming (School of Life Sciences, Anhui University) ;
  • Li, Jingjing (School of Life Sciences, Anhui University) ;
  • Wang, Quan (School of Life Sciences, Anhui University) ;
  • Fang, Wei (School of Life Sciences, Anhui University) ;
  • Peng, Hui (School of Life Sciences, Anhui University) ;
  • Zhang, Xuecheng (School of Life Sciences, Anhui University) ;
  • Xiao, Yazhong (School of Life Sciences, Anhui University)
  • Received : 2013.11.22
  • Accepted : 2014.03.11
  • Published : 2014.06.28

Abstract

A putative lipolytic enzyme gene, named as est9x, was obtained from a marine microbial metagenome of the South China Sea. Sequence analysis showed that Est9X shares lower than 27% sequence identities with the characterized lipolytic enzymes, but possesses a catalytic triad highly conserved in lipolytic enzymes of the ${\alpha}/{\beta}$ hydrolase superfamily. By phylogenetic tree construction, Est9X was grouped into a new lipase/esterase family. To understand Est9X protein in depth, it was recombinantly expressed, purified, and biochemically characterized. Within potential hydrolytic activities, only lipase/esterase activity was detected for Est9X, confirming its identity as a lipolytic enzyme. When using p-nitrophenol esters with varying lengths of fatty acid as substrates, Est9X exhibited the highest activity to the C2 substrate, indicating it is an esterase. The optimal activity of Est9X occurred at a temperature of $65^{\cric}C$, and Est9X was pretty stable below the optimum temperature. Distinguished from other salt-tolerant esterases, Est9X's activity was tolerant to and even promoted by as high as 4 M NaCl. Our results imply that Est9X is a unique esterase and could be a potential candidate for industrial application under extreme conditions.

Keywords

References

  1. Arpigny JL, Jaeger KE. 1999. Bacterial lipolytic enzymes: classification and properties. Biochem. J. 343: 177-183. https://doi.org/10.1042/0264-6021:3430177
  2. Bornscheuer UT. 2002. Microbial carboxyl esterases: classification, properties and application in biocatalysis. FEMS Microbiol. Rev. 26: 73-81. https://doi.org/10.1111/j.1574-6976.2002.tb00599.x
  3. Chen IC, Lin WD, Hsu SK, Thiruvengadam V, Hsu WH. 2009. Isolation and characterization of a novel lysine racemase from a soil metagenomic library. Appl. Environ. Microbiol. 75: 5161-5166. https://doi.org/10.1128/AEM.00074-09
  4. Chu X, He H, Guo C, Sun B. 2008. Identification of two novel esterases from a marine metagenomic library derived from South China Sea. Appl. Microbiol. Biotechnol. 80: 615-625. https://doi.org/10.1007/s00253-008-1566-3
  5. Chung EJ, Lim HK, Kim JC, Choi GJ, Park EJ, Lee MH, et al. 2008. Forest soil metagenome gene cluster involved in antifungal activity expression in Escherichia coli. Appl. Environ. Microbiol. 74: 723-730. https://doi.org/10.1128/AEM.01911-07
  6. Fang Z, Fang W, Liu J, Hong Y, Peng H, Zhang X, et al. 2010. Cloning and characterization of a beta-glucosidase from marine microbial metagenome with excellent glucose tolerance. J. Microbiol. Biotechnol. 20: 1351-1358. https://doi.org/10.4014/jmb.1003.03011
  7. Fang Z, Li T, Wang Q, Zhang X, Peng H, Fang W, et al. 2011. A bacterial laccase from marine microbial metagenome exhibiting chloride tolerance and dye decolorization ability. Appl. Microbiol. Biotechnol. 89: 1103-1110. https://doi.org/10.1007/s00253-010-2934-3
  8. Fu C, Hu Y, Xie F, Guo H, Ashforth EJ, Polyak SW, et al. 2011. Molecular cloning and characterization of a new cold active esterase from a deep-sea metagenomic library. Appl. Microbiol. Biotechnol. 90: 961-970. https://doi.org/10.1007/s00253-010-3079-0
  9. Handelsman J. 2004. Metagenomics: application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 68: 669-685. https://doi.org/10.1128/MMBR.68.4.669-685.2004
  10. Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM. 1998. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem. Biol. 5: R245-R249. https://doi.org/10.1016/S1074-5521(98)90108-9
  11. Hardeman F, Sjoling S. 2007. Metagenomic approach for the isolation of a novel low-temperature-active lipase from uncultured bacteria of marine sediment. FEMS Microbiol. Ecol. 59: 524-534. https://doi.org/10.1111/j.1574-6941.2006.00206.x
  12. Hess M, Katzer M, Antranikian G. 2008. Extremely thermostable esterases from the thermoacidophilic euryarchaeon Picrophilus torridus. Extremophiles 12: 351-364. https://doi.org/10.1007/s00792-008-0139-9
  13. Hu Y, Fu C, Huang Y, Yin Y, Cheng G, Lei F, et al. 2010. Novel lipolytic genes from the microbial metagenomic library of t he S outh C hina S ea m arine sediment. FEMS Microbiol. Ecol. 72: 228-237. https://doi.org/10.1111/j.1574-6941.2010.00851.x
  14. Hu Y, Zhang G, Li A, Chen J, Ma L. 2008. Cloning and enzymatic characterization of a xylanase gene from a soilderived metagenomic library with an efficient approach. Appl. Microbiol. Biotechnol. 80: 823-830. https://doi.org/10.1007/s00253-008-1636-6
  15. Jaeger KE, Dijkstra BW, Reetz MT. 1999. Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu. Rev. Microbiol. 53: 315-351. https://doi.org/10.1146/annurev.micro.53.1.315
  16. Jaeger KE, Reetz MT. 1998. Microbial lipases form versatile tools for biotechnology. Trends Biotechnol. 16: 396-403. https://doi.org/10.1016/S0167-7799(98)01195-0
  17. Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ. 1998. Multiple sequence alignment with Clustal X. Trends Biochem. Sci. 23: 403-405. https://doi.org/10.1016/S0968-0004(98)01285-7
  18. Jeon JH, Lee HS, Kim JT, Kim SJ, Choi SH, Kang SG, Lee JH. 2012. Identification of a new subfamily of salt-tolerant esterases from a metagenomic library of tidal flat sediment. Appl. Microbiol. Biotechnol. 93: 623-631. https://doi.org/10.1007/s00253-011-3433-x
  19. Jeon JH, Kim JT, Lee HS, Kim SJ, Kang SG, Choi SH, Lee JH. 2011. Novel lipolytic enzymes identified from metagenomic library of deep-sea sediment. Evid. Based Complement. Alternat. Med. 2011: 271419.
  20. Jiang X , Huo Y, C heng H , Zhang X, Z hu X , Wu M . 2012. Cloning, expression and characterization of a halotolerant esterase from a marine bacterium Pelagibacterium halotolerans B2T. Extremophiles 16: 427-435. https://doi.org/10.1007/s00792-012-0442-3
  21. Kennedy J, Marchesi JR, Dobson AD. 2008. Marine metagenomics: strategies for the discovery of novel enzymes with biotechnological applications from marine environments. Microb. Cell Fact. 7: 27. https://doi.org/10.1186/1475-2859-7-27
  22. Kim EY, Oh KH, Lee MH, Kang CH, Oh TK, Yoon JH. 2009. Novel cold-adapted alkaline lipase from an intertidal flat metagenome and proposal for a new family of bacterial lipases. Appl. Environ. Microbiol. 75: 257-260. https://doi.org/10.1128/AEM.01400-08
  23. LeCleir GR, Buchan A, Maurer J, Moran MA, Hollibaugh JT. 2007. Comparison of chitinolytic enzymes from an alkaline, hypersaline lake and an estuary. Environ. Microbiol. 9: 197-205. https://doi.org/10.1111/j.1462-2920.2006.01128.x
  24. Lee MH, Hong KS, Malhotra S, Park JH, Hwang EC, Choi HK, et al. 2010. A new esterase EstD2 isolated from plant rhizosphere soil metagenome. Appl. Microbiol. Biotechnol. 88: 1125-1134. https://doi.org/10.1007/s00253-010-2729-6
  25. Lee MH, Lee CH, Oh TK, Song JK, Yoon JH. 2006. Isolation and characterization of a novel lipase from a metagenomic library of tidal flat sediments: evidence for a new family of bacterial lipases. Appl. Environ. Microbiol. 72: 7406-7409. https://doi.org/10.1128/AEM.01157-06
  26. Lorenz P, Eck J. 2005. Metagenomics and industrial applications. Nat. Rev. Microbiol. 3: 510-516. https://doi.org/10.1038/nrmicro1161
  27. Panda T, Gowrishankar BS. 2005. Production and applications of esterases. Appl. Microbiol. Biotechnol. 67: 160-169. https://doi.org/10.1007/s00253-004-1840-y
  28. Park HJ, Jeon JH, Kang SG, Lee JH, Lee SA, Kim HK. 2007. Functional expression and refolding of new alkaline esterase, EM2L8 from deep-sea sediment metagenome. Protein Expr. Purif. 52: 340-347. https://doi.org/10.1016/j.pep.2006.10.010
  29. Peng Q, Zhang X, Shang M, Wang X, Wang G, Li B, et al. 2011. A novel esterase gene cloned from a metagenomic library from neritic sediments of the South China Sea. Microb. Cell Fact. 10: 95. https://doi.org/10.1186/1475-2859-10-95
  30. Rao L, Zhao X, Pan F, Li Y, Xue Y, Ma Y, Lu JR. 2009. Solution behavior and activity of a halophilic esterase under high salt concentration. PLoS ONE 4: e6980. https://doi.org/10.1371/journal.pone.0006980
  31. Rhee JK, Ahn DG, Kim YG, Oh JW. 2005. New thermophilic and thermostable esterase with sequence similarity to the hormone-sensitive lipase family, cloned from a metagenomic library. Appl. Environ. Microbiol. 71: 817-825. https://doi.org/10.1128/AEM.71.2.817-825.2005
  32. Saerens K, Descamps D, Dewettinck K. 2008. Release of short chain fatty acids from cream lipids by commercial lipases and esterases. Biotechnol. Lett. 30: 311-315. https://doi.org/10.1007/s10529-007-9541-0
  33. Schloss PD, Handelsman J. 2003. Biotechnological prospects from metagenomics. Curr. Opin. Biotechnol. 14: 303-310. https://doi.org/10.1016/S0958-1669(03)00067-3
  34. Schmidt-Dannert C, Sztajer H, Stocklein W, Menge U, Schmid RD. 1994. Screening, purification and properties of a thermophilic lipase from Bacillus thermocatenulatus. Biochim. Biophys. Acta 1214: 43-53. https://doi.org/10.1016/0005-2760(94)90008-6
  35. Sharma S, Khan FG, Qazi GN. 2010. Molecular cloning and characterization of amylase from soil metagenomic library derived from Northwestern Himalayas. Appl. Microbiol. Biotechnol. 86: 1821-1828. https://doi.org/10.1007/s00253-009-2404-y
  36. Sheridan PP, Panasik N, Coombs JM, Brenchley JE. 2000. Approaches for deciphering the structural basis of low temperature enzyme activity. Biochim. Biophys. Acta 1543: 417-433. https://doi.org/10.1016/S0167-4838(00)00237-5
  37. Singh A, Singh Chauhan N, Thulasiram HV, Taneja V, Sharma R. 2010. Identification of two flavin monooxygenases from an effluent treatment plant sludge metagenomic library. Bioresour. Technol. 101: 8481-8484. https://doi.org/10.1016/j.biortech.2010.06.025
  38. Sleator RD, Shortall C, Hill C. 2008. Metagenomics. Lett. Appl. Microbiol. 47: 361-366. https://doi.org/10.1111/j.1472-765X.2008.02444.x
  39. Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. https://doi.org/10.1093/molbev/msm092
  40. Voget S, Leggewie C, Uesbeck A, Raasch C, Jaeger KE, Streit WR. 2003. Prospecting for novel biocatalysts in a soil metagenome. Appl. Environ. Microbiol. 69: 6235-6242. https://doi.org/10.1128/AEM.69.10.6235-6242.2003
  41. Waschkowitz T, Rockstroh S, Daniel R. 2009. Isolation and characterization of metalloproteases with a novel domain structure by construction and screening of metagenomic libraries. Appl. Environ. Microbiol. 75: 2506-2516. https://doi.org/10.1128/AEM.02136-08
  42. Wu GJ, Zhang S, Zhang HJ, Zhan SS, Liu ZD. 2013. A novel esterase from a psychrotrophic bacterium Psychrobacter celer 3Pb1 showed cold-adaptation and salt-tolerance. J. Mol. Catal. B Enzym. 98: 119-126. https://doi.org/10.1016/j.molcatb.2013.10.012
  43. Zhang YJ, Zhang XY, Mi ZH, Chen CX, Gao ZM, Chen XL, et al. 2011. Glaciecola arctica sp. nov., isolated from Arctic marine sediment. Int. J. Syst. Evol. Microbiol. 61: 2338-2341. https://doi.org/10.1099/ijs.0.027326-0

Cited by

  1. Characterization of Novel Family IV Esterase and Family I.3 Lipase from an Oil-Polluted Mud Flat Metagenome vol.57, pp.9, 2014, https://doi.org/10.1007/s12033-015-9871-4
  2. Structural and functional analysis of a low-temperature-active alkaline esterase from South China Sea marine sediment microbial metagenomic library vol.42, pp.11, 2014, https://doi.org/10.1007/s10295-015-1653-2
  3. A novel cold-adapted and highly salt-tolerant esterase from Alkalibacterium sp. SL3 from the sediment of a soda lake vol.6, pp.None, 2016, https://doi.org/10.1038/srep19494
  4. Integrated (Meta) Genomic and Synthetic Biology Approaches to Develop New Biocatalysts vol.14, pp.3, 2014, https://doi.org/10.3390/md14030062
  5. Identification and Characterization of a Novel Salt-Tolerant Esterase from the Deep-Sea Sediment of the South China Sea vol.8, pp.None, 2017, https://doi.org/10.3389/fmicb.2017.00441
  6. A Novel Halotolerant Thermoalkaliphilic Esterase from Marine Bacterium Erythrobacter seohaensis SW-135 vol.8, pp.None, 2014, https://doi.org/10.3389/fmicb.2017.02315
  7. A Novel Multifunctional β- N -Acetylhexosaminidase Revealed through Metagenomics of an Oil-Spilled Mangrove vol.4, pp.3, 2014, https://doi.org/10.3390/bioengineering4030062
  8. Harnessing Marine Biocatalytic Reservoirs for Green Chemistry Applications through Metagenomic Technologies vol.16, pp.7, 2014, https://doi.org/10.3390/md16070227
  9. Functional characterization of salt‐tolerant microbial esterase WDEst17 and its use in the generation of optically pure ethyl (R)‐3‐hydroxybutyrate vol.30, pp.6, 2014, https://doi.org/10.1002/chir.22847
  10. A proposed update for the classification and description of bacterial lipolytic enzymes vol.7, pp.None, 2014, https://doi.org/10.7717/peerj.7249
  11. Characterization of one novel microbial esterase WDEst9 and its use to make l-methyl lactate vol.37, pp.3, 2014, https://doi.org/10.1080/10242422.2018.1526926
  12. Identification of an Esterase Isolated Using Metagenomic Technology which Displays an Unusual Substrate Scope and its Characterisation as an Enantioselective Biocatalyst vol.361, pp.11, 2014, https://doi.org/10.1002/adsc.201801691
  13. A Novel VIII Carboxylesterase with High Hydrolytic Activity Against Ampicillin from a Soil Metagenomic Library vol.61, pp.12, 2014, https://doi.org/10.1007/s12033-019-00220-3
  14. A Novel Carboxylesterase Derived from a Compost Metagenome Exhibiting High Stability and Activity towards High Salinity vol.12, pp.1, 2014, https://doi.org/10.3390/genes12010122
  15. Marine Biotechnology: Challenges and Development Market Trends for the Enhancement of Biotic Resources in Industrial Pharmaceutical and Food Applications. A Statistical Analysis of Scientific Literatu vol.19, pp.2, 2014, https://doi.org/10.3390/md19020061