DOI QR코드

DOI QR Code

Development of a Novel Long-Range 16S rRNA Universal Primer Set for Metagenomic Analysis of Gastrointestinal Microbiota in Newborn Infants

  • Ku, Hye-Jin (Department of Food Science and Biotechnology, Institute of Life Sciences and Resources, Kyung Hee University) ;
  • Lee, Ju-Hoon (Department of Food Science and Biotechnology, Institute of Life Sciences and Resources, Kyung Hee University)
  • Received : 2014.03.12
  • Accepted : 2014.04.08
  • Published : 2014.06.28

Abstract

Metagenomic analysis of the human intestinal microbiota has extended our understanding of the role of these bacteria in improving human intestinal health; however, a number of reports have shown that current total fecal DNA extraction methods and 16S rRNA universal primer sets could affect the species coverage and resolution of these analyses. Here, we improved the extraction method for total DNA from human fecal samples by optimization of the lysis buffer, boiling time (10 min), and bead-beating time (0 min). In addition, we developed a new long-range 16S rRNA universal PCR primer set targeting the V6 to V9 regions with a 580 bp DNA product length. This new 16S rRNA primer set was evaluated by comparison with two previously developed 16S rRNA universal primer sets and showed high species coverage and resolution. The optimized total fecal DNA extraction method and newly designed long-range 16S rRNA universal primer set will be useful for the highly accurate metagenomic analysis of adult and infant intestinal microbiota with minimization of any bias.

Keywords

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
  2. Andersson AF, Lindberg M, Jakobsson H, Backhed F, Nyren P, Engstrand L. 2008. Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS One 3: e2836. https://doi.org/10.1371/journal.pone.0002836
  3. Benson D A, Cavanaugh M , Clark K , Karsch-Mizrachi I , Lipman DJ, Ostell J, Sayers EW. 2013. GenBank. Nucleic Acids Res. 41: D36-D42. https://doi.org/10.1093/nar/gks1195
  4. Bezirtzoglou E. 1997. The intestinal microflora during the first weeks of life. Anaerobe 3: 173-177. https://doi.org/10.1006/anae.1997.0102
  5. Bullen C, Tearle P, Willis A. 1976. Bifidobacteria in the intestinal tract of infants: an in-vivo study. J. Med. Microbiol. 9: 325-333. https://doi.org/10.1099/00222615-9-3-325
  6. Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, et al. 2014. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42: D633- D642. https://doi.org/10.1093/nar/gkt1244
  7. Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, Knight R. 2010. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl. Acad. Sci. USA 107: 11971-11975. https://doi.org/10.1073/pnas.1002601107
  8. Duncan S, Louis P, Flint H. 2007. Cultivable bacterial diversity from the human colon. Lett. Appl. Microbiol. 44: 343-350. https://doi.org/10.1111/j.1472-765X.2007.02129.x
  9. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. 2005. Diversity of the human intestinal microbial flora. Science 308: 1635-1638. https://doi.org/10.1126/science.1110591
  10. Fan W , Huo G , Li X, Yang L, Duan C, Wang T, Chen J. 2013. Diversity of the intestinal microbiota in different patterns of feeding infants by Illumina high-throughput sequencing. World J. Microbiol. Biotechnol. 29: 2365-2372. https://doi.org/10.1007/s11274-013-1404-3
  11. Fleming DW, Cochi SL, MacDonald KL, Brondum J , Hayes PS, Plikaytis BD, et al. 1985. Pasteurized milk as a vehicle of infection in an outbreak of listeriosis. N. Engl. J. Med. 312: 404-407. https://doi.org/10.1056/NEJM198502143120704
  12. Gasson MJ. 1983. Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplastinduced curing. J. Bacteriol. 154: 1-9.
  13. Gill S R, Pop M, DeBoy R T, Eckburg PB, Turnbaugh P J, Samuel BS, et al. 2006. Metagenomic analysis of the human distal gut microbiome. Science 312: 1355-1359. https://doi.org/10.1126/science.1124234
  14. Grumbt B, Eck S, Hinrichsen T, Hirv K. 2013. D iagnostic applications of next generation sequencing in immunogenetics and molecular oncology. Transfus. Med. Hemother. 40: 196-206. https://doi.org/10.1159/000351267
  15. Guarner F, Malagelada JR. 2003. Gut flora in health and disease. Lancet 361: 512-519. https://doi.org/10.1016/S0140-6736(03)12489-0
  16. Hoiseth SK, Stocker B. 1981. Aromatic-dependent Salmonella Typhimurium are non-virulent and effective as live vaccines. Nature 291: 238-239. https://doi.org/10.1038/291238a0
  17. Holzapfel WH, Haberer P, Snel J, Schillinger U, Huis in't Veld JH. 1998. Overview of gut flora and probiotics. Int. J. Food Microbiol. 41: 85-101. https://doi.org/10.1016/S0168-1605(98)00044-0
  18. Hooper LV, Macpherson AJ. 2010. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat. Rev. Immunol. 10: 159-169. https://doi.org/10.1038/nri2710
  19. Huse SM, Dethlefsen L, Huber JA, Welch DM, Relman DA, Sogin ML. 2008. Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genetics 4: e1000255. https://doi.org/10.1371/journal.pgen.1000255
  20. Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, et al. 2011. Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl. Acad. Sci. USA 108: 4578-4585. https://doi.org/10.1073/pnas.1000081107
  21. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948. https://doi.org/10.1093/bioinformatics/btm404
  22. Lee J-H, O'Sullivan DJ. 2010. Genomic insights into bifidobacteria. Microbiol. Mol. Biol. Rev. 74: 378-416. https://doi.org/10.1128/MMBR.00004-10
  23. Matamoros S, Gras-Leguen C, Le Vacon F, Potel G, de La Cochetiere M-F. 2013. Development of intestinal microbiota in infants and its impact on health. Trends Microbiol. 21: 167-173. https://doi.org/10.1016/j.tim.2012.12.001
  24. McOrist A L, Jackson M , Bird AR. 2002. A comparison o f five methods for extraction of bacterial DNA from human faecal samples. J. Microbiol. Methods 50: 131-139. https://doi.org/10.1016/S0167-7012(02)00018-0
  25. Onmus-Leone F, Hang J, Clifford RJ, Yang Y, Riley MC, Kuschner RA, et al. 2013. Enhanced de novo assembly of high throughput pyrosequencing data using whole genome mapping. PloS One 8: e61762. https://doi.org/10.1371/journal.pone.0061762
  26. Palmer C, Bik EM, DiGiulio DB, Relman DA, and Brown PO. 2007. Development of the human infant intestinal microbiota. PLoS Biol. 5: e177. https://doi.org/10.1371/journal.pbio.0050177
  27. Penders J , Thijs C, Vink C, Stelma FF, Snijders B, Kummeling I, et al. 2006. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 118: 511-521. https://doi.org/10.1542/peds.2005-2824
  28. Qin J , Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464: 59-65. https://doi.org/10.1038/nature08821
  29. Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular Cloning. Cold Spring Harbor Laboratory Press, New York.
  30. Shokralla S, Spall JL, Gibson JF, Hajibabaei M. 2012. Nextgeneration sequencing technologies for environmental DNA research. Mol. Ecol. 21: 1794-1805. https://doi.org/10.1111/j.1365-294X.2012.05538.x
  31. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley R E, et al. 2009. A core gut microbiome in obese and lean twins. Nature 457: 480-484. https://doi.org/10.1038/nature07540
  32. Turroni F , Peano C , Pass DA, Foroni E, Severgnini M, Claesson MJ, et al. 2012. Diversity of bifidobacteria within the infant gut microbiota. PLoS One 7: e36957. https://doi.org/10.1371/journal.pone.0036957
  33. Yoshioka H, Iseki K , Fujita K. 1983. D evelopment a nd differences of intestinal flora in the neonatal period in breast-fed and bottle-fed infants. Pediatrics 72: 317-321.
  34. Yu Z, Morrison M. 2004. Improved extraction of PCRquality community DNA from digesta and fecal samples. Biotechniques 36: 808-813.

Cited by

  1. Gut Microbiota Community and Its Assembly Associated with Age and Diet in Chinese Centenarians vol.25, pp.8, 2014, https://doi.org/10.4014/jmb.1410.10014
  2. Diversity and community analysis of fermenting bacteria isolated from eight major Korean fermented foods using arbitrary-primed PCR and 16S rRNA gene sequencing vol.58, pp.3, 2014, https://doi.org/10.1007/s13765-015-0062-6
  3. Genome Sequence of Bacillus cereus FORC_021, a Food-Borne Pathogen Isolated from a Knife at a Sashimi Restaurant vol.26, pp.12, 2014, https://doi.org/10.4014/jmb.1604.04094
  4. Complete genome sequence of Vibrio vulnificus FORC_017 isolated from a patient with a hemorrhagic rash after consuming raw dotted gizzard shad vol.8, pp.None, 2014, https://doi.org/10.1186/s13099-016-0104-6
  5. Metagenomic Approach to Identifying Foodborne Pathogens on Chinese Cabbage vol.28, pp.2, 2014, https://doi.org/10.4014/jmb.1710.10021
  6. Analysis of Microbiota in Bellflower Root, Platycodon grandiflorum, Obtained from South Korea vol.28, pp.4, 2014, https://doi.org/10.4014/jmb.1712.12031
  7. Targeting the 16S rRNA Gene for Bacterial Identification in Complex Mixed Samples: Comparative Evaluation of Second (Illumina) and Third (Oxford Nanopore Technologies) Generation Sequencing Technologi vol.21, pp.1, 2014, https://doi.org/10.3390/ijms21010298
  8. Effects of PrObiotics on the Symptoms and Surgical ouTComes after Anterior REsection of Colon Cancer (POSTCARE): A Randomized, Double-Blind, Placebo-Controlled Trial vol.9, pp.7, 2020, https://doi.org/10.3390/jcm9072181
  9. Microbiome Study of Initial Gut Microbiota from Newborn Infants to Children Reveals that Diet Determines Its Compositional Development vol.30, pp.7, 2014, https://doi.org/10.4014/jmb.2002.02042
  10. Multiomic Approach to Analyze Infant Gut Microbiota: Experimental and Analytical Method Optimization vol.11, pp.7, 2014, https://doi.org/10.3390/biom11070999