DOI QR코드

DOI QR Code

Formation of Biogenic Amines by Lactobacillus plantarum Isolated from Makgeolli

막걸리에서 분리한 Lactobacillus plantarum의 biogenic amine 생성능

  • Kwak, Hee Jung (Nutrition and Functional Food Research Team, National Institute of Food and Drug Safety Evaluation) ;
  • Kim, Jae Young (Department of Biological Science, Gachon University) ;
  • Lee, Hyun Sook (Department of Food Science and Nutrition, Dongseo University) ;
  • Kim, Soon Mi (Department of Food and Nutrition, Gachon University)
  • 곽희정 (식품의약품안전평가원 식품위해평가부 영양기능연구팀) ;
  • 김재영 (가천대학교 생명과학과) ;
  • 이현숙 (동서대학교 식품영양학과) ;
  • 김순미 (가천대학교 영양학과)
  • Received : 2014.01.09
  • Accepted : 2014.04.16
  • Published : 2014.08.31

Abstract

We examined biogenic amine (BA) production as well as the diversity of bacterial flora in 11 types of commercial makgeolli stored at 4 and $20^{\circ}C$. Moreover, we studied the BA-producing activity of three L. plantarum strains isolated from makgeolli. At $20^{\circ}C$, the BA content was highly increased and the denatured DNA bands were more variable in non-sterilized makgeolli compared to sterilized makgeolli. The major BAs produced in commercial makgeolli were histamine and putrescine. Histamine, tyramine, putrescine, and cadaverine were produced in excess by inoculation of the three L. plantarum isolates to makgeolli stored at $20^{\circ}C$ for 21 days. These results suggest that some L. plantarum strains in makgeolli can produce different types of BAs, depending on the extent of degradation of makgeolli.

본 연구는 시판되고 있는 막걸리의 저장 온도에 따른 BA 생성의 차이를 비교하고, 시판 막걸리의 우점종을 찾아내어, 이 균을 멸균 막걸리에 접종함으로써 BA 생성여부를 확인하고자 하였다. 시판 막걸리 11종을 구입해 $4^{\circ}C$$20^{\circ}C$에서 각각 10일 동안 저장한 뒤 BA 함량을 확인한 결과, 생막걸리는 $4^{\circ}C$에 비해 $20^{\circ}C$에서 10일간 저장함에 따라 BA 양이 급격히 증가하였고, 살균막걸리는 온도에 따른 BA 변화가 없었다. 시판 막걸리에서 가장 많이 검출된 BA는 histamine과 putrescine이었다. $4^{\circ}C$에서 저장한 막걸리에 비해 $20^{\circ}C$에서 저장한 막걸리에서 미생물의 변성된 DNA band가 다양하게 나타났다. $4^{\circ}C$에서 저장한 시판 막걸리의 주된 bacteria는 Staphylococcus succinus와 Staphylococcus gallinarum, Lactobacillus (L). brevis, L. plantarum, L. fermentum였고, $20^{\circ}C$ 막걸리에서 공통적으로 증식한 균은 L. perolens, L. harbinensis, LBARR16SI L. brevis, L. plantarum, L. satsumensis이었다. 막걸리에서 분리한 18종의 colony 중 3종의 L. plantarum strains을 $4^{\circ}C$에서 3일간 보관한 신선한 막걸리를 멸균한 후 접종하고 BA 생성능을 비교한 결과, PLP나 아미노산을 첨가하지 않은 경우는 접종 후 15일까지 BA가 검출되지 않았다. 멸균막걸리에 PLP를 추가해준 경우 3종의 colony를 접종해준 모든 막걸리에서 15일까지 미량의 tyramine만 검출되었으며 PLP와 아미노산을 둘다 추가해준 경우 3종의 colony 모두 10일째와 15일째에 tyramine과 histamine이 검출되었다. $20^{\circ}C$에서 21일간 저장한 막걸리는 멸균 후 PLP만 추가해주어도 3종의 colony 모두 5일, 10일, 15일에 과량의 tyramine, histamine, putrescine, cadaverine이 검출되었다. 이런 결과로 볼 때, 막걸리를 저온 저장하지 않을 경우 막걸리 성분의 분해로 인하여 BA 양이 증가하며, 막걸리 저장 온도는 막걸리 미생물 양상에 매우 큰 영향을 미칠 수 있음을 알 수 있었다. 또한 막걸리 유산균의 우점종인 L. plantarum은 막걸리에서 histamine, tyramine, putrescine과 cadaverine을 생성할 수 있음을 밝혀, 이것이 막걸리 BA 생성의 주요 원인균 중 하나임을 알 수 있었다. 이후 막걸리의 BA를 낮추기 위한 조건을 탐색하는 연구가 계속 진행될 필요가 있다.

Keywords

References

  1. Chang KJ, Yu TJ. Studies on the components of sokokju, and commercial yakju. Korean J. Food Sci. Technol. 13: 307-313 (1981)
  2. Han EH, Lee TS, Noh BS, Lee DS. Volatile flavor components in mash of takju prepared by using different nuruks. Korean J. Food Sci. Technol. 29: 563-570 (1997)
  3. Jeon BY, Seo HN, Yun A, Lee IH, Park DH. Effect of glasswort (Salicornia herbacea L.) on nuruk-making process and makgeolli quality. Food Sci. Biotechnol. 19: 999-1004 (2010) https://doi.org/10.1007/s10068-010-0140-9
  4. Kim AR, Lee SY, Kim KBWR, Song EJ, Kim JH, Kim MJ, Ji KW, Ahn IS, Ahn DH. Effect of Glycyrrhiza uralensis in shelf-life and quality of takju. Korean J. Food Sci. Technol. 40: 194-200 (2008)
  5. Kim SM, Han AR. Storage properties and biogenic amines production of makgeolli brewed with different proportions of rice and wheat flour. Korean J. Food Sci. Technol. 44: 583-591 (2012) https://doi.org/10.9721/KJFST.2012.44.5.583
  6. Lee SS, Kim KS, Eom AH, Sung CK, Hong IP. Production of Korean traditional rice-wine made from cultures of the single ungal isolates under laboratory conditions. Korean J. Mycol. 30: 61-65 (2002) https://doi.org/10.4489/KJM.2002.30.1.061
  7. Kim JO, Lee BH. Taxonomical studies of yeasts in Korea -On yeasts isolated from takju-. Korean J. Microbiol. 8: 77-84 (1970)
  8. Shin YD, Cho DH. A study on the microflora changes during takju brewing. Korean J. Microbiol. 8: 53-64 (1970)
  9. Yang JY, Lee KH. Shelf-life and microbiological study of sansung takju. Korean J. Food Sci. Technol. 28: 779-785 (1996)
  10. Yu TS, Kim HS, Hong J, Ha HP, Kim TY, Yoon IW. Bibliographical study on microorganisms of nuruk (until 1945). J. Korean Soc. Food Sci. Nutr. 25: 170-179 (1996)
  11. Kim TY, Yoon IW. Fermentation characteristics of traditional alcoholic beverages brewed with improved-nuruk. J. East Asian Soc Dietary Life 7: 399-404 (1997)
  12. Kim HS, Hyun JS, Kim J, Ha HP, Yu TS. Characteristics of useful fungi isolated from traditional Korea nuruk. J. Korean Soc. Food Sci. Nutr. 26: 767-774 (1997)
  13. Yu TS, Kim J, Kim HS, Hyun JS, Ha HP, Park MK. Bibliographical study on microorganisms of traditional Korean nuruk (since 1945). J. Korean Soc. Food Sci. Nutr. 27: 789-799 (1998)
  14. Seo MY, Lee JK, Ahn BH, Cha SK. The changes of microflora during the fermentation of takju and yakju. Korean J. Food Sci. Technol. 37: 61-66 (2005)
  15. Lee TS, Choi JY. Volatile flavor components in mash of takju prepared by using Aspergillus kawachii nuruks. Korean J. Food Sci. Technol. 37: 944-950 (2005)
  16. Jo KY, Ha DM. Isolation and identification of the lactic acid bacteria from nuruk. Agr. Chem. Biotechnol. 38: 95-99 (1995)
  17. Lee JH, Yu TS. Identification and characteristics of lactic acid bacteria isolated from nuruk. Korean J. Biotechnol. Bioeng. 15: 359-365 (2000)
  18. Jin J, Kim SY, Jin Q, Eom HJ, Han NS. Diversity analysis of lactic acid bacteria in takju, Korean Rice Wine. J. Microbiol. Biotechnol. 18: 1678-1682 (2008)
  19. Kim SY, Yoo KS, Kim JE, Kim JS, Jung JY, Jin Q, Eom HJ, Han NS. Diversity analysis of lactic acid bacteria in Korean rice wines by culture-independent method using PCR-denaturing gradient gel electrophoresis. Food Sci. Biotechnol. 19: 749-755 (2010) https://doi.org/10.1007/s10068-010-0105-z
  20. Min JH, Baek SY, Lee JS, Kim HK. Changes of yeasts and bacterial flora during the storage of Korean traditional makgeolli. Korean J. Mycol. 39: 151-153 (2011) https://doi.org/10.4489/KJM.2010.39.2.151
  21. Kim JY, Kim D, Park P, Kang HI, Ryu EK, Kim SM. Effects of storage temperature and time on the biogenic amine content and microflora in Korean turbid rice wine, makgeolli. Food Chem. 128: 87-92 (2011) https://doi.org/10.1016/j.foodchem.2011.02.081
  22. Coton M, Romano A, Spano G, Ziegler K, Vetrana C, Desmarais C, Lonvaud-Funel A, Lucas P, Coton E. Occurrence of biogenic amine-forming lactic acid bacteria in wine and cider. Food Microbiol. 27: 1078-1085 (2010) https://doi.org/10.1016/j.fm.2010.07.012
  23. Ancn-Azpilicueta C, Gonzlez-Marco A, Jimnez-Moreno N. Current knowledge about the presence of amines in wine. Crit. Rev. Food Sci. Nutr. 48: 257-275 (2008) https://doi.org/10.1080/10408390701289441
  24. Jorgensen LV, Huss HH, Dalgaard P. The effect of biogenic amine production by single bacterial cultures and metabiosis on cold-smoked salmon. J. Appl. Microbiol. 89: 920-934 (2000) https://doi.org/10.1046/j.1365-2672.2000.01196.x
  25. Lonvaud-Funel A. Biogenic amines in wines: role of lactic acid bacteria. FEMS Microbiol. Lett. 199: 9-13 (2001) https://doi.org/10.1111/j.1574-6968.2001.tb10643.x
  26. Fernndez M, Ziga M. Amino Acid Catabolic Pathways of Lactic Acid Bacteria. Crit. Rev. Microbiol. 32: 155-183 (2006) https://doi.org/10.1080/10408410600880643
  27. Herbert P, Cabrita MJ, Ratola N, Laureano O, Alves A. Relationship between biogenic amines and free amino acid contents of wines and musts from Alentejo (Portugal). J. Environ. Sci. Health B. 41: 1171-1186 (2006) https://doi.org/10.1080/03601230600856967
  28. Ten Brink B, Damink C, Joosten HM, Huis in't Veld JH. Occurrence and formation of biologically active amines in foods. Int. J. Food Microbiol. 11: 73-84 (1990) https://doi.org/10.1016/0168-1605(90)90040-C
  29. Shalaby AR. Significance of biogenic amines to food safety and human health. Food Res. Int. 29: 675-690 (1996) https://doi.org/10.1016/S0963-9969(96)00066-X
  30. Han GH, Cho TY, Yoo MS, Kim CS, Kim JM, Kim HA, Kim MO, Kim SC, Lee SA, Ko YS, Kim SH, Kim DB. Biogenic amines formation and content in fermented soybean paste (cheonggukjang). Korean J. Food Sci. Technol. 39: 541-545 (2007)
  31. Silla Santos MH. Biogenic amines: their importance in foods. Int. J. Food Microbiol. 29: 213-231 (1996) https://doi.org/10.1016/0168-1605(95)00032-1
  32. Smit AY, Du Toit WJ, Du Toit M. Biogenic amines in wine: understanding the headache. S. Afr. J. Enol. Vitic. 29: 109-127 (2008)
  33. Jung MJ, Nam YD, Roh SW, Bae JW. Unexpected convergence of fungal and bacterial communities during fermentation of traditional Korean alcoholic beverages inoculated with various natural starters. Food Microbiol. 30: 112-123 (2012) https://doi.org/10.1016/j.fm.2011.09.008
  34. Kwon SJ, Ahn TY, Sohn JH. Analysis of microbial diversity in makgeolli fermentation using PCR-DGGE. J. Life Sci. 22: 232-238 (2012) https://doi.org/10.5352/JLS.2012.22.2.232
  35. Min JH, Kim YH, Kim JH, Choi SY, Lee JS, Kim HK. Comparison of microbial diversity of Korean commercial makgeolli showing high ${\beta}$-glucan content and high Antihypertensive activity, respectively. Mycobiol. 40: 138-141 (2012) https://doi.org/10.5941/MYCO.2012.40.2.138
  36. Landete JM, Ferrer S, Polo L, Pardo I. Biogenic amine in wines from three spanish regions. J. Agr. Food Chem. 53: 1119-1124 (2005) https://doi.org/10.1021/jf049340k
  37. Fadda S, Vignolo G, Oliver G. Tyramine degradation and tyramine/histamine production by lactic acid bacteria and Kocuria strains. Biotechnol. Lett. 23: 2015-2019 (2001) https://doi.org/10.1023/A:1013783030276
  38. Tang T, Shi T, Qian K, Li P, Li J, Cao Y. Determination of biogenic amines in beer with pre-column derivatization by high performance liquid chromatography. J. Chromatogr. B 877: 507-512 (2009) https://doi.org/10.1016/j.jchromb.2008.12.064
  39. Kirby KS. A new method for the isolation of deoxyribonucleic acids: evidence on the nature of bonds between deoxyribonucleic acid and protein. Biochem. J. 66: 495-504 (1957)
  40. Xueliang R, Xiaoyang Z, Warndorff M, Bucheli P, Qingyao S. DNA extraction and fingerprinting of commercial rice cereal products. Food Res. Int. 39: 433-439 (2006) https://doi.org/10.1016/j.foodres.2005.09.006
  41. Ros-Chumillas M, Egea-Cortines M, Lopez-Gomez A, Weiss J. Evaluation of a rapid DNA extraction method to detect yeast cells by PCR in orange juice. Food Control 18: 33-39 (2007) https://doi.org/10.1016/j.foodcont.2005.08.004
  42. Soufleros E, Barrios, ML, Bertrand A. Correlation between the content of biogenic amines and other wine compounds. Am. J. Enol. Vitic. 49: 266-278 (1998)
  43. Marcobal A, Martin-Alvarez PJ, Polo MC, Munoz R, Moreno-Arribas MV. Formation of biogenic amines throughout the industrial manufacture of red wine. J. Food Prot. 69: 397-404 (2006)
  44. Forsythe WI, Redmond A. Two controlled trials of tyramine in children with migraine. Dev. Med. Child Neurol. 16: 794-799 (1974)
  45. Straub BW, Kicherer M, Schilcher SM, Hammes WP. The formation of biogenic amines by fermentation organisms. Z. Lebensm. Unters. Forsch. 201: 79-82 (1995) https://doi.org/10.1007/BF01193205
  46. Kek M, KalaP. Biogenic amines in foods and their roles in human nutrition. Czech J. Food Sci. 16: 151-159 (1998)
  47. Maijala R, Eerola S. Contaminant lactic acid bacteria of dry sausages produce histamine and tyramine. Meat Sci. 35: 387-395 (1993) https://doi.org/10.1016/0309-1740(93)90043-H
  48. Halsz A, Barth, Simon-Sarkadi L, Holzapfel W. Biogenic amines and their production by microorganisms in food. Trends Food Sci. Tech. 5: 42-49 (1994) https://doi.org/10.1016/0924-2244(94)90070-1
  49. Ogawa H, Tsuji H, Seto A, Hara S, Totani Y. Synergistic effect of spermine on antioxidation of polyunsaturated oil. J. Japan Oil Chem. Soc. 45: 1327-1332 (1996) https://doi.org/10.5650/jos1996.45.1327
  50. Chang HW, Kim KH, Nam YD, Roh SW, Kim MS, Jeon CO, Oh HM, Bae JW. Analysis of yeast and archaeal population dynamics in kimchi using denaturing gradient gel electrophoresis. Int. J. Food Microbiol. 126: 159-166 (2008) https://doi.org/10.1016/j.ijfoodmicro.2008.05.013
  51. Kim TW, Lee JH, Kim SE, Park MH, Chang HC, Kim HY. Analysis of microbial communities in doenjang, a Korean fermented soybean paste, using nested PCR-denaturing gradient gel electrophoresis. Int. J. Food Microbiol. 131: 265-271 (2009) https://doi.org/10.1016/j.ijfoodmicro.2009.03.001
  52. Martin-Alvarez PJ, Marcobal A, Polo C, Moreno-Arribas MV. Influence of technological practices on biogenic amine contents in red wines. Eur. Food Res. Technol. 222: 420-424 (2006) https://doi.org/10.1007/s00217-005-0142-7
  53. Maijala RL, Eerola SH, Aho MA, Hirn JA. The effect of GDL-induced pH decrease on the formation of biogenic amines in meat. J. Food Protect. 56: 125-129 (1993)
  54. Bardcz S. Polyamines in food and their consequences for food quality and human health. Trends Food Sci. Tech. 6: 341-346 (1995) https://doi.org/10.1016/S0924-2244(00)89169-4
  55. Karovicova J, Kohajdova Z. Biogenic Amines in Food. Chem. Pap. 59: 70-79 (2005)

Cited by

  1. Identification of characterization and statistical optimization of medium constituent for Bacillus subtilis SCJ4 isolated from Korean traditional fermented food vol.51, pp.1, 2015, https://doi.org/10.7845/kjm.2015.5004
  2. Screening of Biogenic Amine Non-Producing Yeast and Optimization of Culture Conditions Using Statistical Method for Manufacturing Black Raspberry Wine vol.44, pp.4, 2015, https://doi.org/10.3746/jkfn.2015.44.4.592
  3. Quality Characteristics of Mixed Makgeolli with Barley and Wheat vol.29, pp.4, 2016, https://doi.org/10.9799/ksfan.2016.29.4.565