DOI QR코드

DOI QR Code

PC12 Cell Protective Effects of Broccoli (Brassica oleracea var. italica) Leaf Fraction against H2O2-induced Oxidative Stress

H2O2로 유발된 산화적 스트레스에 대한 브로콜리(Brassica oleracea var. italica) 잎 분획물의 PC12 cell 보호 효과

  • Park, Seon Kyeong (Division of Applied Life Science, Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Jin, Dong Eun (Division of Applied Life Science, Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Park, Chang Hyeon (Division of Applied Life Science, Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Seung, Tae Wan (Division of Applied Life Science, Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Choi, Sung-Gil (Division of Applied Life Science, Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Heo, Ho Jin (Division of Applied Life Science, Institute of Agriculture and Life Science, Gyeongsang National University)
  • 박선경 (경상대학교 응용생명과학부, 농업생명과학연구원) ;
  • 진동은 (경상대학교 응용생명과학부, 농업생명과학연구원) ;
  • 박창현 (경상대학교 응용생명과학부, 농업생명과학연구원) ;
  • 승태완 (경상대학교 응용생명과학부, 농업생명과학연구원) ;
  • 최성길 (경상대학교 응용생명과학부, 농업생명과학연구원) ;
  • 허호진 (경상대학교 응용생명과학부, 농업생명과학연구원)
  • Received : 2014.04.03
  • Accepted : 2013.05.26
  • Published : 2014.08.31

Abstract

To examine the physiological effects of broccoli (Brassica oleracea var. italica) leaf, the bioavailable compounds in broccoli leaf extract, and its in vitro neuroprotective effects against $H_2O_2$-induced oxidative stress were examined in this study. The chloroform fraction of broccoli leaf extract had the highest total phenolic content of all the fraction than others, and the highest 2,2"-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical-scavenging activity and malondialdehyde (MDA) inhibitory effect. Intracellular reactive oxygen species (ROS) accumulation resulting in $H_2O_2$-treated in PC12 cells was significantly lower when the chloroform fraction was present in the medium compared to that in PC12 cells treated with $H_2O_2$ alone. In a cell viability assay performed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), the chloroform fraction showed protective effects against $H_2O_2$-induced neurotoxicity and inhibited lactate dehydrogenase (LDH) release into the medium. High-performance liquid chromatography (HPLC) analysis showed that ferulic acid was the predominant phenolic compound in chloroform fraction of broccoli leaf.

브로콜리(Brassica oleracea var. italica) 잎의 n-hexane, chloroform, ethyl acetate, butanol 및 distilled water 분획물의 total phenolic 화합물 함량은 chloroform 분획물이 206.8 mg GAE/g으로 가장 높게 나타났으며, ABTS radical 소거활성 및 지질 과산화(MDA) 생성 억제효과 실험 결과에서 chloroform 분획물에서 가장 높은 활성을 나타내었다. in vitro 항산화 실험들에서 우수한 효과를 보인 chloroform 분획물을 이용하여 $H_2O_2$으로 유도한 산화적 스트레스에 대한 신경세포(PC12 cell)에서의 산화적 스트레스 생성 억제효과, 세포 생존율 그리고 세포막 손상 억제효과 역시 농도 의존적 경향을 나타내며 positive control 로 사용된 Vit.C와 유의적인 결과를 나타냈다. 마지막으로, HPLC 분석 결과 브로콜리 잎 chloroform 분획물에 존재하는 주요 phenolic 화합물은 feulic acid인 것으로 확인되었다. 본 연구 결과를 종합해볼 때, 생리활성 물질로서의 ferulic acid 등을 함유한 브로콜리 잎 chloroform 분획물은 in vitro 항산화 활성과 함께 신경세포 보호효과를 나타내는 고부가가치 기능성 소재로의 활용이 기대된다.

Keywords

References

  1. Park SH, Hwang HS, Han JH. Development of drink from composition with medicinal plants and evaluation of its physiological function. Korean J. Nutr. 37: 364-372 (2004)
  2. Jeong EJ, Kim JW, Kim YC. Rhus verniciflua stokes attenuates glutamate-induced neurotoxicity in primary cultures of rat cortical cells. Nat. Prod. Sci. 14: 156-160 (2008)
  3. Fridovich, I. Biological effects of the superoxide radical. Arch. Biochem. Biophys. 247: 1-11 (1986) https://doi.org/10.1016/0003-9861(86)90526-6
  4. Heo HJ, Kim DO, Choi SJ, Shin DH and Lee CY. Potent inhibitory effect of flavonoids in Scutellaria baicalensis on amyloid a protein-induced neurotoxicity. J. Agr. Food Chem. 52: 4128-4132 (2004) https://doi.org/10.1021/jf049953x
  5. Bidchol AM, Wilfred A, Abhijna P and Harish R. Free radical scavenging activity of aqueous and ethanolic extract of Brassica oleracea L. var. italic. Food Bioprocess Technol. 4: 1137-1143 (2011) https://doi.org/10.1007/s11947-009-0196-9
  6. Nohl H and Jordan, W. The mitochondrial site of superoxide formation. Biochem. Biophy. Res. Commun. 138: 533-539 (1986) https://doi.org/10.1016/S0006-291X(86)80529-0
  7. Yoon MY, Lee BB, Kim JY, Kim YS, Park EJ, Lee SC, Park HR. Antioxidant activity and neuroprotective effect of psoralea corylifolia linne extracts. Korean J. Pharmacol. 38: 84-89 (2007)
  8. Matucsheski NV, Juvik JA, Jeffery EH. Heating decreases epithiospecifier protein activity and increases sulforaphane formation in broccoli. Phytochemistry 65: 1273-1281 (2004) https://doi.org/10.1016/j.phytochem.2004.04.013
  9. Caudhary A, Sharma U, Vig AP, Singh B, Arora S. Free radical scavenging, antiproliferative activities and profiling of variations in the level of phytochemicals in different parts of broccoli (Brassica oleracea italica). Food Chem. 148: 373-380 (2014) https://doi.org/10.1016/j.foodchem.2013.10.042
  10. Lee HS, Park YW. Antioxidant activity and antibacterial activities from different parts of broccoli extracts under high temperature. J. Korean Soc. Food Sci. Nutr. 34: 759-764 (2005) https://doi.org/10.3746/jkfn.2005.34.6.759
  11. Kim CH, Cho KR. Quality characteristics of sponge cakes made with different quantities of broccoli powder. Korean J. Food Sci. Technol. 42: 459-467 (2010)
  12. Stoewsand G.S. Bioactive organosulfur phytochemicals in Brassica oleracea vegetables-a review, Food Chem. Toxicol. 33: 537 (1995) https://doi.org/10.1016/0278-6915(95)00017-V
  13. Arnaiz E, Bernal J, Martin MT, Nozal MJ, Bernal JL, Toribio L. Supercritical fluid extraction of free amino acids from broccoli leaves. J. Chromatogr. A 1250: 49-53 (2012) https://doi.org/10.1016/j.chroma.2012.04.066
  14. Kim, DO, Jeong SW, Lee CY. Antioxidant capacity of phenolic phytochemical from various cultivars of plums. Food Chem. 81: 321-326 (2003) https://doi.org/10.1016/S0308-8146(02)00423-5
  15. Kwak JH, Choi GN, Pack JH, Kim JH, Jeong HR, Jeong CH, Heo HJ. Antioxidant and neuronal cell protective effect of purple sweet potato extract. J. Agric. Life Sci. 44: 57-66 (2010)
  16. Chang ST, Wu JH, Wang SY, Kang PL,Yang NS, Shyur, LF. Antioxidant Activity of Extracts from Acacia confusa Bark and Heartwood. J. Agr. Food Chem. 49: 3420-3424 (2001) https://doi.org/10.1021/jf0100907
  17. Kim JK, Choi SJ, Cho HY, Hwang HJ, Kim YJ, Lim T, Kim CJ, Kim HK, Peterson S, Shin DH. Protective effects of kamepferol(3,4',5,7-tetrahydroxyflavone) against amyloid beta peptide($A{\beta}$)-induced neurotoxicity in ICR mice. Biosci. Biotechnol. Biochem. 74: 397-401 (2010) https://doi.org/10.1271/bbb.90585
  18. Kim SS, Park RY, Jeon HJ, Kwon YS, Chun W. Neuroprotective effects of 3,5-dicaffeoylquinic acid on hydrogen peroxide-induced cell death in SH-SY5Y cells. Phytother. Res. 19: 243-245 (2005) https://doi.org/10.1002/ptr.1652
  19. Heo HJ, Cho HY, Hong BS, Kim HK, Kim EK, Kim BK, Shin DH. Protective effect of 4',5-dihydroxy-3',6,7-trimethoxyflavone from Artemisia asiatica against $A{\beta}$-induced oxidative stress on PC12 cells. Amyloid 8: 194-201 (2001) https://doi.org/10.3109/13506120109007362
  20. Kim KH, Kim HJ, Byun MW, Yook HS. Antioxidnat and antimicrobial activities of ethanol extract from six vegetables containing different sulfur compounds. J. Korean Soc. Food Sci. Nutr. 41: 577-583 (2012) https://doi.org/10.3746/jkfn.2012.41.5.577
  21. Yoo KM, Kim DO, Lee CY. Evaluation of different methods of antioxidant measurement. Food Sci. Biotechnol. 16: 177-182 (2007)
  22. Re R, Plellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio. Med. 26: 1231-1237 (1999) https://doi.org/10.1016/S0891-5849(98)00315-3
  23. Uchida K, Stadtman ER. Covalent attachment of 4-hydroxynonenal to glyceraldehyde-3-phosphate dehydrogenase A possible involvement of intra and intermolecular cross-linking reaction. J. Biol. Chem. 268: 6388-6393 (1993)
  24. Zhao B. Natural antioxidants protect neurons in Alzheimer's disease and Parkinson's disease. Neurochem. Res. 34: 630-638 (2009) https://doi.org/10.1007/s11064-008-9900-9
  25. Hurst RD, Wells RW, Hurst SM, McGhie TK, Cooney JM, Jensen DJ. Blueberry fruit polyphenolics suppress oxidative stress-induced skeletal muscle cell damage in vitro. Mol. Nutr. Food Res. 54: 353-363 (2010) https://doi.org/10.1002/mnfr.200900094
  26. Kim HY, Lee YA, Cho EJ. Free radical scavenging effect and protective activity from oxidative stress of broccoli flowers and sprouts. CNU J. Agric. Sci. 39: 81-86 (2012) https://doi.org/10.7744/cnujas.2012.39.1.081
  27. Heo HJ, Choi SJ, Choi SG, Shin DH, Lee JM, Lee CY. Effect of banana, orange, and apple on oxidative stress-induced neurotoxicity in PC12cells. J. Food Sci. 73: H28-32 (2008) https://doi.org/10.1111/j.1750-3841.2007.00632.x
  28. Zhao Z, Moghadasian MH. Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid: A review. Food Chem. 109: 691-702 (2008) https://doi.org/10.1016/j.foodchem.2008.02.039
  29. Kanski J, Aksenova M, Stoyanova A, Butterfield A. Ferulic acid antioxidant protection against hydroxyl and peroxyl radical oxidation in snaptosomal and neuroal cell culture systems in vitro: structure-activity studies. J. Nutr. Biochem. 13: 273-281 (2002) https://doi.org/10.1016/S0955-2863(01)00215-7

Cited by

  1. Antiamnesic Effect of Broccoli (Brassica oleraceavar.italica) Leaves on Amyloid Beta (Aβ)1–42-Induced Learning and Memory Impairment vol.64, pp.17, 2016, https://doi.org/10.1021/acs.jafc.6b00559