DOI QR코드

DOI QR Code

Inhibitory Effect of Galangin from Alpinia officinarum on Lipopolysaccharide-induced Nitric Oxide Synthesis in RAW 264.7 macrophages

고량강으로부터 분리된 galangin의 RAW 264.7 세포주에서 LPS로 유도된 nitric oxide 생성 저해활성

  • Lee, Hwa Jin (Department of Natural Medicine Resources, Semyung University)
  • 이화진 (세명대학교 자연약재과학과)
  • Received : 2013.05.26
  • Accepted : 2014.06.04
  • Published : 2014.08.31

Abstract

In a screen for plant-derived inhibitors of nitric oxide (NO) production in lipopolysaccharide (LPS)-activated RAW 264.7 macrophage cells, a flavonol isolated from the chloroform extract of Alpinia officinarum was isolated. The structure of the flavonol was found to be 3,5,7-trihydroxy-2-phenylchromen-4-one (galangin, GLG) by using spectroscopy. GLG exhibited an inhibitory effect ($IC_{50}$ value: $26.8{\mu}M$) on NO production in LPS-stimulated RAW 264.7 murine macrophage cells. Moreover, GLG suppressed expressions of inducible nitric oxide synthase (iNOS) protein and mRNA in a dose-dependent manner.

각종 염증성 질환 및 패혈증으로 인한 치명적인 저혈압을 예방치료하는 약물 개발을 위한 기초 연구로서 유도성 NOS (inducible nitric oxide synthase, iNOS) 에 의한 NO의 과다 생성을 저해하는 성분을 천연물로부터 찾아내고자 본 연구를 수행하였다. NO 생성 저해활성의 검정은 대식세포주인 RAW 264.7 세포를 LPS로 활성화한 후, 유도되는 iNOS에 의해 생성되는 NO를 Griess 시약을 이용해 $NO_2{^-}$의 형태로 정량하였다. 또한 Western blot 실험 및 RT-PCR 실험을 시행하여 iNOS의 mRNA의 발현 및 단백 합성에 대한 영향을 조사하였다. 고량강(Alpinia officinarum Hance, Zingiberaceae)의 메탄올 추출물로부터 극성에 따른 용매 분획을 시행하여 활성성분을 분리하고 분광학적 분석법을 이용하여 분리한 단일성분이 flavonol 구조인 3,5,7-trihydroxy-2-phenylchromen-4-one (galangin, GLG)임을 확인하였다. 작용기전을 알아보기 위해, Western blot 및 RT-PCR 실험결과, 분리한 flavonol 성분(GLG)의 NO 생성저해 활성은 iNOS mRNA발현을 저해하여 iNOS 효소 단백질의 생성이 억제됨에 기인하는 것으로 확인하였다. 따라서, 고량강 추출물로부터 분리한 flavonol 화합물(GLG)이 iNOS 발현의 억제를 통해 다량의 NO 생산을 저해함으로써, 고량강(Alpinia officinarum)의 NO 과량생성과 관련된 염증성 질환에 대한 응용 가능성이 클 것으로 기대된다.

Keywords

References

  1. Garthwaite J. New insight into the functioning of nitric oxide-receptive guanylyl cyclase: physiological and pharmacological implications. Mol. Cell Biochem. 334: 221-232 (2010) https://doi.org/10.1007/s11010-009-0318-8
  2. Crane BR, Arvai AS, Ghosh DK, Wu C, Getzoff ED, Stuehr DJ, Tainer JA. Structure of nitric oxide synthase oxygenase dimer with pterin and substrate. Science 279: 2121-2126 (1998) https://doi.org/10.1126/science.279.5359.2121
  3. Forstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur. Heart J. 33: 829-837 (2012) https://doi.org/10.1093/eurheartj/ehr304
  4. Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: structure, function and inhibition. Biochem J. 357: 593-615 (2001) https://doi.org/10.1042/0264-6021:3570593
  5. Andrew PJ, Mayer B. Enzymatic function of nitric oxide synthases. Cardiovasc. Res. 43: 521-531 (1999) https://doi.org/10.1016/S0008-6363(99)00115-7
  6. De Cruz SJ, Kenyon NJ, Sandrock CE. Bench-to-bedside review: the role of nitric oxide in sepsis. Expert Rev. Respir. Med. 3: 511-521 (2009) https://doi.org/10.1586/ers.09.39
  7. Ly TN, Yamauchi R, Kato K. Volatile Components of the Essential Oils in Galanga (Alpinia officinarum Hance) from Vietnam. Food Sci. Technol. Res. 7: 303-306 (2001) https://doi.org/10.3136/fstr.7.303
  8. Shin D, Kinoshita K, Koyama K, Takahashi K. Antiemetic principles of Alpinia officinarum. J. Nat. Prod. 65: 1315-1318 (2002) https://doi.org/10.1021/np020099i
  9. Yadav PN, Liu Z, Rafi MM.. A diarylheptanoid from lesser galangal (Alpinia officinarum) inhibits proinflammatory mediators via inhibition of mitogen-activated protein kinase, p44/42, and transcription factor nuclear factor-kappa B. J. Pharmacol. Exp. Ther. 30: 925-931 (2003)
  10. Ly TN, Shimoyamada M, Kato K, Yamauchi R. Isolation and characterization of some anti-oxidative compounds from the rhizomes of smaller galanga (Alpinia officinarum Hance). J. Agr. Food Chem. 51: 4924-4929 (2003) https://doi.org/10.1021/jf034295m
  11. Lee KH, Rhee KH. Anti-tumor activity of the extract of Alpinia officinarum using hollow fiber assay. Korean J. Food Nutr. 24: 496-500 (2011) https://doi.org/10.9799/ksfan.2011.24.4.496
  12. Kim HJ, Yoo MY, Kim HK, Lee BH, Oh KS, Seo HW, Yon GH, Gendaram O, Kwon DY, Kim YS, Ryu SY. Vasorelaxation effect of the falvonoids from the rhizome extract of Alpinia officinarum on isolated rat thoracic aorta. Kor. J. Pharmacogn. 37: 56-59 (2006)
  13. Lee HJ, Kim JS, Ryu JH. Suppression of inducible nitric oxide synthase expression by diarylheptanoids from Alpinia officinarum. Planta Med. 72: 68-71 (2006) https://doi.org/10.1055/s-2005-873176
  14. Wawer I, Zielinska A. $^{13}C$ CP/MAS NMR studies of flavonoids. Magn. Reson. Chem. 39: 374-380 (2001) https://doi.org/10.1002/mrc.871
  15. Su L, Chen X, Wu J, Lin B, Zhang H, Lan L, Luo H. Galangin inhibits proliferation of hepatocellular carcinoma cells by inducing endoplasmic reticulum stress. Food Chem. Toxicol. 62: 810-816 (2013) https://doi.org/10.1016/j.fct.2013.10.019
  16. Morello S, Vellecco V, Alfieri A, Mascolo N, Cicala C. Vasorelaxant effect of the flavonoid galangin on isolated rat thoracic aorta. Life Sci. 78: 825-830 (2006) https://doi.org/10.1016/j.lfs.2005.05.072
  17. Kim HH, Bae Y, Kim SH. Galangin attenuates mast cell-mediated allergic inflammation. Food Chem. Toxicol. 57: 209-216 (2013) https://doi.org/10.1016/j.fct.2013.03.015
  18. Kumar S, Alagawadi KR. Anti-obesity effects of galangin, a pancreatic lipase inhibitor in cafeteria diet fed female rats. Pharm. Biol. 51: 607-613 (2013) https://doi.org/10.3109/13880209.2012.757327
  19. Lotito SB, Frei B. Dietary flavonoids attenuate tumor necrosis factor alpha-induced adhesion molecule expression in human aortic endothelial cells. Structure-function relationships and activity after first pass metabolism. J. Biol. Chem. 281: 37102-37110 (2006) https://doi.org/10.1074/jbc.M606804200
  20. Suzuki R, Tanaka T, Yamamoto M, Sakagami H, Tomomura M, Tomomura A, Satoh K, Shirataki Y. In search of new biological activities of isolates from Odontoglossum Harvengtense 'Tutu'. In Vivo. 26: 993-999 (2012)
  21. Matsuda H, Ando S, Kato T, Morikawa T, Yoshikawa M. Inhibitors from the rhizomes of Alpinia officinarum on production of nitric oxide in lipopolysaccharide-activated macrophages and the structural requirements of diarylheptanoids for the activity. Bioorgan. Med. Chem. 14: 138-142 (2006) https://doi.org/10.1016/j.bmc.2005.08.003
  22. Kim JS, Lee HJ, Lee MH, Kim J, Jin C, Ryu JH. Luteolin inhibits LPS-stimulated inducible nitric oxide synthase expression in BV-2 microglial cells. Planta Med. 72: 65-68 (2006) https://doi.org/10.1055/s-2005-873145
  23. Ryu JH, Ahn H, Lee HJ. Inhibition of nitric oxide production on LPS-activated macrophages by kazinol B from Broussonetia kazinoki. Fitoterapia 74: 350-354 (2003) https://doi.org/10.1016/S0367-326X(03)00062-5
  24. Endale M, Park SC, Kim S, Kim SH, Yang Y, Cho JY, Rhee MH. Quercetin disrupts tyrosine-phosphorylated phosphatidylinositol 3-kinase and myeloid differentiation factor-88 association, and inhibits MAPK/AP-1 and IKK/NF-${\kappa}B$-induced inflammatory mediators production in RAW 264.7 cells. Immunobiology 218: 1452-1467 (2013) https://doi.org/10.1016/j.imbio.2013.04.019
  25. Kim HK, Park HR, Lee JS, Chung TS, Chung HY, Chung J. Down-regulation of iNOS and TNF-alpha expression by kaempferol via NF-kappaB inactivation in aged rat gingival tissues. Biogerontology 8: 399-408 (2007) https://doi.org/10.1007/s10522-007-9083-9
  26. Lee HJ, Li H, Chang HR, Jung H, Lee DY. Ryu JH. (-)-Nyasol, isolated from Anemarrhena asphodeloides suppresses neuroinflammatory response through the inhibition of $I-{\kappa}B{\alpha}$ degradation in LPS-stimulated BV-2 microglial cells. J. Enzym Inhib. Med. Chem. 28: 954-959 (2013) https://doi.org/10.3109/14756366.2012.697057
  27. Kim JS, Kim JY, Lee HJ, Lim HJ, Lee DY, Kim DH, Ryu JH. Suppression of inducible nitric oxide synthase expression by furfuran lignans from flower buds of Magnolia fargesii in BV-2 microglial cells. Phytother. Res. 24: 748-753 (2010)
  28. Kim TH, Li H, Wu Q, Lee HJ, Ryu JH. A new labdane diterpenoid with anti-inflammatory activity from Thuja orientalis. J. Ethnopharmacol. 146: 760-767 (2013) https://doi.org/10.1016/j.jep.2013.02.001
  29. Li H, Kim JY, Hyeon J, Lee HJ, Ryu JH. In vitro antiinflammatory activity of a new sesquiterpene lactone isolated from Siegesbeckia glabrescens. Phytother. Res. 25: 1323-1327 (2011)
  30. Zhao F, Gao Z, Jiao W, Chen L, Chen L, Yao X. In vitro antiinflammatory effects of beta-carboline alkaloids, isolated from Picrasma quassioides, through inhibition of the iNOS pathway. Planta Med. 78: 1906-1911 (2012) https://doi.org/10.1055/s-0032-1327883
  31. Luo Y, Liu M, Yao X, Xia Y, Dai Y, Chou G, Wang Z. Total alkaloids from Radix Linderae prevent the production of inflammatory mediators in lipopolysaccharide-stimulated RAW 264.7 cells by suppressing NF-kappaB and MAPKs activation. Cytokine 46: 104-110 (2009) https://doi.org/10.1016/j.cyto.2008.12.017