DOI QR코드

DOI QR Code

LPS에 의해 자극된 RAW264.7 세포에 대한 계지가출부탕의 항염증활동

Anti-inflammatory Activities of GyejigaChulBuTang on Lipopolysaccharide-stimulated RAW264.7 Cells

  • 정민정 (우석대학교 한의과대학 한방소아과학교실) ;
  • 이승연 (동의대학교 한의과대학 한방소아과학교실) ;
  • 유선애 (동의대학교 한의과대학 한방소아과학교실) ;
  • 강경화 (동의대학교 한의과대학 생리학교실)
  • Jeong, Min-Jeong (Department of Korean Pediatrics, College of Korean Medicine, Woosuk University) ;
  • Lee, Seung-Yeon (Department of Korean Pediatrics, College of Korean Medicine, Dongeui University) ;
  • Yu, Sun-Ae (Department of Korean Pediatrics, College of Korean Medicine, Dongeui University) ;
  • Kang, Kyung-Hwa (Department of Physiology, College of Korean Medicine, Dongeui University)
  • 투고 : 2014.07.25
  • 심사 : 2014.08.10
  • 발행 : 2014.08.31

초록

Objectives GyejigaChulBuTang (GCBT) is a prescription used to treat acute and chronic arthritis in Korea, China, and Japan. This study assessed the anti-inflammatory and anti-oxidant activities of GCBT on lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. Methods Raw264.7 cells were pretreated with or without GCBT for 1 hour prior to incubation with LPS. Anti-inflammatory activity of GCBT was evaluated with reference to gene expression and production levels of proinflammatory cytokines ($TNF{\alpha}$, IL-$1{\beta}$, IL-6, GM-CSF and $INF{\gamma}$) and inflammatory mediators (iNOS, COX-2, NO and $PGE_2$). In addition, intracellular ROS generation and signal transduction of MAPK family, PI3K/Akt and $I{\kappa}B{\alpha}/NF{\kappa}B$ was investigated. Results Prior treatment with GCBT inhibited elevation of $TNF{\alpha}$, IL-$1{\beta}$, IL-6, GM-CSF, $INF{\gamma}$, NO and $PGE_2$, together with their cognate mRNAs in a dose-dependent manner. Intracellular ROS contents were similarly reduced. These effects were due to inhibition of LPS-induced phosphorylation of MAPK family, PI3K/Akt and $I{\kappa}B{\alpha}$ as well as nuclear translocation of $NF{\kappa}B$. Conclusions GCBT suppresses pro-inflammatory mediators. GCBT has potential in the treatment of juvenile rheumatoid arthritis associated with inflammation.

키워드

참고문헌

  1. Kim DS. Juvenile rheumatoid arthritis. Korean J Pediatr. 2007;50(12):1173. https://doi.org/10.3345/kjp.2007.50.12.1173
  2. Phelan JD, Thompson SD. Genomic progress in pediatric arthritis: recent work and future goals. Curr Opin Rheumatol. 2006;18(5):482-9. https://doi.org/10.1097/01.bor.0000240359.30303.e4
  3. Forre O, Smerdel A. Genetic epidemiology of juvenile idiopathic arthritis. Scand J Rheumatol. 2002;31(3):123-8. https://doi.org/10.1080/rhe.31.3.123.128
  4. Murray K, Thompson S, Glass D. Pathogenesis of juvenile chronic arthritis: genetic and environmental factors. Arch Dis Child. 1997;77(6):530-4. https://doi.org/10.1136/adc.77.6.530
  5. Brewer EJ Jr, Bass J, Baum J, Cassidy JT, Fink C, Jacobs J, Hanson V, Levinson JE, Schaller J, Stillman JS. Current proposed revision of JRA criteria. JRA Criteria Subcommittee of the Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Section of The Arthritis Foundation. Arthritis Rheum. 1997;20(2):195-9.
  6. De Benedetti F, Martini A. Is systemic juvenile rheumatoid arthritis an interleukin 6 mediated disease? J Rheumatol. 1998;25(2):203-7.
  7. De Benedetti F, Massa M, Pignatti P, Albani S, Novick D, Martini A. Serum soluble interleukin 6 (IL-6) receptor and IL-6/soluble IL-6 receptor complex in systemic juvenile rheumatoid arthritis. J Clin Invest. 1994;93(5):2114-9. https://doi.org/10.1172/JCI117206
  8. Woo P. The cytokine network in juvenile chronic arthritis. Rheum Dis Clin North Am. 1997;23(3):491-8. https://doi.org/10.1016/S0889-857X(05)70344-6
  9. Morimoto C, Reinherz EL, Borel Y, Mantzouranis E, Steinberg AD, Schlossman SF. Autoantibody to an immunoregulatory inducer population in patients with juvenile rheumatoid arthritis. J Clin Invest. 1981;67(3):753-61. https://doi.org/10.1172/JCI110092
  10. Mangge H, Kenzian H, Gallistl S, Neuwirth G, Liebmann P, Kaulfersch W, Beaufort F, Muntean W, Schauenstein K. Serum cytokines in juvenile rheumatoid arthritis. Correlation with conventional inflammation parameters and clinical subtypes. Arthritis Rheum. 1995;38(2):211-20. https://doi.org/10.1002/art.1780380209
  11. Hahn YS, Kim JG. Pathogenesis and clinical manifestations of juvenile rheumatoid arthritis. Korean J Pediatr. 2010;53(11):921-30. https://doi.org/10.3345/kjp.2010.53.11.921
  12. Choi J, Lee C. A clinical study of juvenile rheumatoid arthritis. J Oriental Rehab Med. 1998;18(2):306-17.
  13. The korean academy of oriental rehabilitation medicine ed. Oriental rehabilitation medicine. Seoul: Koonja. 2005:78-99.
  14. Kaplanski G, Marin V, Montero-Julian F, Mantovani A, Farnarier C. IL-6: a regulator of the transition from neutrophil to monocyte recruitment during inflammation. Trends Immunol. 2003;24(1):25-9. https://doi.org/10.1016/S1471-4906(02)00013-3
  15. Williams RO, Feldmann M, Maini RN. Anti-tumor necrosis factor ameliorates joint disease in murine collagen-induced arthritis. Proc Natl Acad Sci USA. 1992;89(20):9784-8. https://doi.org/10.1073/pnas.89.20.9784
  16. Feldmann M, Brennan FM, Maini RN. Rheumatoid Arthritis. Cell. 1996;85:307-10. https://doi.org/10.1016/S0092-8674(00)81109-5
  17. Hom JT, Bendele AM, Carlson DG. In vivo administration with IL-1 accelerates the development of collagen-induced arthritis in mice. J Immunol. 1988;141(3):834-41.
  18. Grom AA, Murray KJ, Luyrink L, Emery H, Passo MH, Glass DN, Bowlin T, Edwards AC 3rd. Patterns of expression of tumor necrosis factor alpha, tumor necrosis factor beta, and their receptors in synovia of patients with juvenile rheumatoid arthritis and juvenile spondylarthropathy. Arthritis Rheum. 1996;39(10):1703-10. https://doi.org/10.1002/art.1780391013
  19. Kutukculer N, Caglayan S, Aydogdu F. Study of pro-inflammatory (TNF-alpha, IL-1alpha, IL-6) and T-cell-derived (IL-2, IL-4) cytokines in plasma and synovial fluid of patients with juvenile chronic arthritis: correlations with clinical and laboratory parameters. Clin Rheumatol. 1998;17(4):288-92. https://doi.org/10.1007/BF01451007
  20. Shingu M, Nagai Y, Isayama T, Naono T, Nobunaga M, Nagai Y. The effects of cytokines on metalloproteinase inhibitors (TIMP) and collagenase production by human chondrocytes and TIMP production by synovial cells and endothelial cells. Clin Exp Immunol. 1993;94(1):145-9.
  21. Pascual V, Allantaz F, Arce E, Punaro M, Banchereau J. Role of interleukin-1 (IL-1) in the pathogenesis of systemic onset juvenile idiopathic arthritis and clinical response to IL-1 blockade. J Exp Med 2005;201(9):1479-86. https://doi.org/10.1084/jem.20050473
  22. Nishimoto N, Kishimoto T. Interleukin 6: from bench to bedside. Nat Clin Pract Rheumatol. 2006;2(11):619-26. https://doi.org/10.1038/ncprheum0338
  23. Ou LS, See LC, Wu CJ, Kao CC, Lin YL, Huang JL. Association between serum inflammatory cytokines and disease activity in juvenile idiopathic arthritis. Clin Rheumatol. 2002;21(1):52-6. https://doi.org/10.1007/s100670200012
  24. De Benedetti F, Massa M, Robbioni P, Ravelli A, Burgio GR, Martini A. Correlation of serum interleukin-6 levels with joint involvement and thrombocytosis in systemic juvenile rheumatoid arthritis. Arthritis Rheum. 1991;34(9):1158-63. https://doi.org/10.1002/art.1780340912
  25. De Benedetti F, Pignatti P, Gerloni V, Massa M, Sartirana P, Caporali R, Montecucco CM, Corti A, Fantini F, Martini A. Differences in synovial fluid cytokine levels between juvenile and adult rheumatoid arthritis. J Rheumatol. 1997;24(7):1403-9.
  26. Wallace JL. Nitric oxide as a regulator of inflammatory processes. Mem Inst Oswaldo Cruz. 2005;100(1):5-9. https://doi.org/10.1590/S0074-02762005000900002
  27. Tinker AC, Wallace AV. Selective inhibitors of inducible nitric oxide synthase: potential agents for the treatment of inflammatory diseases? Curr Top Med Chem. 2006;6(2):77-92. https://doi.org/10.2174/156802606775270297
  28. Vane JR, Mitchell JA, Appleton I, Tomlinson A, Bishop-Bailey D, Croxtall J, Willoughby DA. Inducible isoforms of cyclooxygenase and nitric-oxide synthase in inflammation. Proc Natl Acad Sci USA. 1994;91(6):2046-50. https://doi.org/10.1073/pnas.91.6.2046
  29. Hla T, Ristimaki A, Appleby S, Barriocanal JG. Cyclooxygenase gene expression in inflammation and angiogenesis. Ann NY Acad Sci. 1993;696:197-204.
  30. Dubois RN, Abramson SB, Crofford L, Gupta RA, Simon LS, Putte LBAVD, Lipsky PE. Cyclooxygenase in biology and disease. FASEB J. 1998;12(12):1063-73. https://doi.org/10.1096/fasebj.12.12.1063
  31. Liang YC, Huang YT, Tsai SH, Lin-Shiau SY, Chen CF, Lin JK. Suppression of inducible cyclooxygenase and inducible nitric oxide synthase by apigenin and related flavonoids in mouse macrophages. Carcinogenesis. 1999;20(10):1945-52. https://doi.org/10.1093/carcin/20.10.1945
  32. Floyd RA. Neuroinflammatory processes are important in neurodegenerative diseases: an hypothesis to explain the increased formation of reactive oxygen and nitrogen species as major factors involved in neurodegenerative disease development. Free Radic Biol Med. 1999;26(9-10):1346-55. https://doi.org/10.1016/S0891-5849(98)00293-7
  33. Cesaratto L, Vascotto C, Calligaris S, Tell G. The importance of redox state in liver damage. Ann Hepatol. 2004;3(3):86-92.
  34. Kabe Y, Ando K, Hirao S, Yoshida M, Handa H. Redox regulation of NF-kappaB activation: distinct redox regulation between the cytoplasm and the nucleus. Antioxid Redox Signal. 2005;7(3-4):395-403. https://doi.org/10.1089/ars.2005.7.395
  35. Zhang W, Liu HT. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 2002;12(1):9-18. https://doi.org/10.1038/sj.cr.7290105
  36. Silva JD, Pierrat B, Mary JL, Lesslauer W. Blockade of p38 mitogen-activated protein kinase pathway inhibits inducible nitric-oxide synthase expression in mouse astrocytes. J Biol Chem. 1997;272(45):28373-80. https://doi.org/10.1074/jbc.272.45.28373
  37. Murphy GM, Yang L, Cordell B. Macrophage colony-stimulating factor augments $\beta$-amyloid-induced interleukin-1, interleukin-6, and nitric oxide production by microglial cells. J Biol Chem. 1998;273(33):20967-71. https://doi.org/10.1074/jbc.273.33.20967
  38. Xu X, Malave A. p38 MAPK, but not p42/p44 MAPK mediated inducible nitric oxide synthase expression in C6 glioma cells. Life Sci. 2000;67(26):3221-30. https://doi.org/10.1016/S0024-3205(00)00902-4
  39. Fiebich BL, Lieb K, Engels S, Heinrich M. Inhibition of LPS-induced p42/44 MAP kinase activation and iNOS/NO synthesis by parthenolide in rat primary microglial cells. J Neuroimmunol. 2002;132(1):18-24. https://doi.org/10.1016/S0165-5728(02)00279-5
  40. Christman JW, Blackwell TS, Juurlink BH. Redox regulation of nuclear factor kappa B: therapeutic potential for attenuating inflammatory responses. Brain Pathol Zurich Switz. 2002;10(1):153-62.
  41. Dauphinee SM, Karsan A. Lipopolysaccharide signaling in endothelial cells. Lab Invest. 2005;86(1):9-22.

피인용 문헌

  1. Efficacy and safety of gyejigachulbutang (Gui-Zhi-Jia-Shu-Fu-Tang, Keishikajutsubuto, TJ-18) for knee pain in patients with degenerative knee osteoarthritis: a randomized, placebo-controlled, patient and assessor blinded clinical trial vol.20, pp.1, 2019, https://doi.org/10.1186/s13063-019-3234-6