DOI QR코드

DOI QR Code

드레인 조절회로를 이용한 무선전력전송용 고이득 고효율 Class-E 전력증폭기 설계

High Gain and High Efficiency Class-E Power Amplifier Using Controlling Drain Bias for WPT

  • 김상환 (숭실대학교 정보통신전자공학부) ;
  • 서철헌 (숭실대학교 정보통신전자공학부)
  • Kim, Sanghwan (Information and Telecommunication Engineering, Soongsil University) ;
  • Seo, Chulhun (Information and Telecommunication Engineering, Soongsil University)
  • 투고 : 2014.04.10
  • 심사 : 2014.09.03
  • 발행 : 2014.09.25

초록

본 논문에서는 입력전력에 따라 드레인 바이어스를 조절하여 낮은 입력 전력에서도 고효율 동작이 가능한 무선전력전송용 고효율 class-E 전력증폭기를 설계하였다. 고효율 동작이 가능한 class-E 전력증폭기에 적응형 바이어스 조절회로를 추가하여 낮은 입력 전력에서 드레인 바이어스를 조절함으로써 전체적인 효율의 향상을 얻을 수 있다. 제안된 적응형 class-E 전력증폭기는 효율의 향상을 위해 직렬 공진회로와 입, 출력 정합회로를 이용하여 구현하였으며, 입력전력에 따라 드레인 바이어스를 조절하기 위해 방향성 결합기, 전력 검출기, 연산 증폭기를 이용하여 적응형 바이어스 조절회로를 구성하였다. 따라서 전력증폭기의 최대출력과 전력효율은 13.56 MHz에서 41.83 dBm, 85.67 %이고, 0 dBm ~ 6 dBm의 낮은 입력 전력에서 고정형 바이어스보다 평균 8 %의 효율의 증가를 확인하였다.

In this paper, a high-efficiency power amplifier is implemented by using a drain bias control circuit operated at low input power for WPT(Wireless Power Transfer). Adaptive bias control circuit was added to high-efficiency class-E amplifier. It was possible to obtain the overall improvement in efficiency by adjusting the drain bias at low input power. The proposed adaptive class-E amplifier is implemented by using the input and output matching network and serial resonant circuit for improvement in efficiency. Drain bias control circuit consists of a directional coupler, power detector, and operational amplifier for adjusting the drain bias according to the input power. The measured results show that output powers of 41.83 dBm were obtained at 13.56 MHz. At this frequency, we have obtained the power added efficiency(PAE) of 85.67 %. It was confirmed increase of PAE of an average of 8 % than the fixed bias from the low input power level of 0 dBm ~ 6 dBm.

키워드

참고문헌

  1. Matthew M. Radmanesh, Radio Frequency and Microwave electronics Illustrated. Prentice Hall PTR, 2001.
  2. A. Karalis, J. D. Joannopoulos, M. Soljacic, "Efficient wireless non-radiative mid-range energy transfer," Annals of Physics, vol. 323, no. 1, pp. 34-48, January 2008. https://doi.org/10.1016/j.aop.2007.04.017
  3. B. L. Cannon, J. F. Hoburg, D. D. Stancil, and S. C. Goldstein, "Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers," IEEE Transactions on Power Electronics, vol. 24, no. 7, pp. 1819-1825, July 2009. https://doi.org/10.1109/TPEL.2009.2017195
  4. Y. S. Jeon J. K Cha, S. W. Nam, "High-Efficiency power amplifier using novel dynamic bias switching", IEEE Transactions on Microwave Theory And Techniques, vol. 55, no. 4, April 2007.
  5. S. C. Cripps, RF Power Amplifiers for Wireless Communications, Artech House, 1999.
  6. A. Grebennikov, N. O. Sokal, Switchmode RF power Amplifiers, ewnes, 2007.
  7. N. O. Sokal and A. D. Sokal, "Class-E a new class of high efficiency tuned single-ended switching power amplifiers", IEEE Journal of Solid-State Circuits, vol. 10, no. 3, pp. 168-176, Jun 1975. https://doi.org/10.1109/JSSC.1975.1050582