DOI QR코드

DOI QR Code

Melt Grafting of EPDM and Itaconic Acid: Effect of Reaction Conditions and Initiator Type/Concentration

Ethylene-propylene-diene terpolymer (EPDM)와 itaconic acid의 melt grafting: 반응조건과 개시제 종류 및 농도의 영향

  • Kim, Ki-Jae (Department of Chemical and Biomolecular Engineering, Pusan National University) ;
  • Bae, Jong-Woo (Innovation Material Research Group, Korea Institute of Footwear and Leather Technology) ;
  • Kim, Jung-Soo (Innovation Material Research Group, Korea Institute of Footwear and Leather Technology) ;
  • Lee, Jin-Hyok (Innovation Material Research Group, Korea Institute of Footwear and Leather Technology) ;
  • Kim, Gu-Ni (Innovation Material Research Group, Korea Institute of Footwear and Leather Technology) ;
  • Oh, Sang-Taek (Innovation Material Research Group, Korea Institute of Footwear and Leather Technology) ;
  • Kim, Wonho (Department of Chemical and Biomolecular Engineering, Pusan National University)
  • 김기재 (부산대학교 화학공학과) ;
  • 배종우 (한국신발피혁연구원 혁신소재연구단 고무연구실) ;
  • 김정수 (한국신발피혁연구원 혁신소재연구단 고무연구실) ;
  • 이진혁 (한국신발피혁연구원 혁신소재연구단 고무연구실) ;
  • 김구니 (한국신발피혁연구원 혁신소재연구단 고무연구실) ;
  • 오상택 (한국신발피혁연구원 혁신소재연구단 고무연구실) ;
  • 김원호 (부산대학교 화학공학과)
  • Received : 2014.04.30
  • Accepted : 2014.07.18
  • Published : 2014.09.30

Abstract

Melt grafting of itaconic acid (IA) onto an ethylene-propylene-diene terpolymer (EPDM) with various organic peroxide initiators was performed. Finding the optimum mixing conditions and concentration of ingredients is critical for effective grafting and optimum properties of grafted materials. This study focused on the effects of mixing conditions (temperature and time), initiator type/concentration and monomer concentration on the grafting degree and efficiency, melt flow index, and gel content of EPDM-g-IA. The initiator, 2,5-dimethyl-2,5-di(tert-butyl peroxy)-hexane (T-101), appeared to meet for the best grafting degree (1.91%). The grafting degree increased markedly by increasing the amounts of monomer IA and initiator T-101. The grafting degree also increased by increasing mixing temperature and time. The optimum monomer and initiator concentrations and reaction temperature and time were found to be about 5wt%/0.05wt% and $160^{\circ}C$/15min, respectively. It was found that the physical properties of EPDM-g-IA were higher than those of the pristine EPDM.

유기과산화물 개시제를 사용하여 ethylene-propylene-diene terpolymer (EPDM)에 단량체 itaconic acid (IA)를 용융 그라프트시켜 그라프트 중합물 EPDM-g-IA을 얻었다. 이 과정에서 효율적인 그라프트 율과 인장강도 특성이 우수한 그라프트 중합물을 얻기 위한 최적의 반응조건과 단량체 및 개시제 농도를 구하는 것은 매우 중요하다. 따라서 본 연구에서는 그라프트 온도 및 시간 등의 반응조건, 개시제 종류 및 함량, 모노머 함량이 EPDM-g-IA의 그라프트 율, 그라프트 효율, 용융흐름지수(MI) 및 겔 함량 등에 미치는 영향을 고찰하였다. 개시제 중에서 2,5-dimethyl-2,5-di(tert-butyl peroxy)-hexane (T-101)가 가장 우수한 그라프트 정도 (1.91 %)를 나타내었으며, IA와 T-101의 함량이 증가함에 따라 그라프트 율은 증가하였다. 또한 그라프트 율은 반응(혼합)온도 및 반응시간이 증가함에 따라 역시 증가하다가 특정 온도/시간 이상에서는 안정화 혹은 약간 감소하는 경향을 나타내었다. 이러한 결과들로부터 최적의 단량체와 개시제 농도는 5wt%와 0.05 wt%이었으며, 최적의 반응온도와 시간은 $160^{\circ}C$와 15분인 것을 알 수 있었다. 이타콘산 그라프트 EPDM은 미반응 EPDM에 비해 인장강도 등의 기계적 물성이 증가함을 확인할 수 있었다.

Keywords

References

  1. W. Hoffmann, "Rubber Technology Handbook", Hanser Gardner Publications, Munich 2000.
  2. J. W. Bae, J. S. Kim, J. H. Lee, G. N. Kim, S. T. Oh, Y. H. Lee, and H. D. Kim, "Mechanical Properties and Recyclavility of Ionic Thermoplastic Rubber Based on Citraconated Ethylene Propylene Diene Monomer", Asian. J. Chem., 25, 5272 (2013).
  3. K. Chino, "Thermoreversible crosslinking rubber using supramolecular hydrogen bonding networks", Rubber Chem. Technol., 75, 713 (2002). https://doi.org/10.5254/1.3544997
  4. M. A. J. van der Mee, J. G. P. Goossens, M. van Duin, "Thermoreversible cross-linking of maleated ethylene/propylene copolymers with diamines and amino-alcohols", Polymer, 49, 1239 (2008). https://doi.org/10.1016/j.polymer.2008.01.031
  5. R. A. Weiss, J. J. Fitzerald and D. Kim, "Viscoelastic behavior of lightly sulfonated polystyrene ionomers", Macromolecules, 24, 1071 (1991). https://doi.org/10.1021/ma00005a015
  6. C. G. Bazium and A. Eisenberg, "Ion containing polymers: Ionomers", J. Chem.Educ., 58, 938 (1981). https://doi.org/10.1021/ed058p938
  7. W. J. MacKnight and T. R. Earnest, "The structure and properties of ionomers", J. Polym. Sci., Macromol. Rev., 16, 41 (1981). https://doi.org/10.1002/pol.1981.230160102
  8. A. Eisenberg, John Wiley & Sons Inc., "Introduction to ionomers", New York, 1998
  9. L. Holliday, Ed., Applied Science Publishers, "Ionic polymers", London, 1975.
  10. A. Eisenberg, Ed., American chemical society, "Ions in polymers", Washington, DC, 1980.
  11. M. R.Tant, K.A. Mauritz, G. L.Wikes, Eds., Champman & Hall, "Ionomers: Synthesis, structure, properties and application", London, (1997).
  12. T. Caykara, "Effect of Maleic Acid Content on Network Structure and Swelling properties of Poly(N-isopropylacrylamide- co-maleic acid) Polyelectrolyte Hydrogels", J. Appl. Polym. Sci., 92, 763 (2004). https://doi.org/10.1002/app.20032
  13. J. S. Kim, J. W. Bae, J. H. Lee, S. T. Oh, G. N. Kim, Y. H. Lee, and H. D. Kim, "Melt Grated of Ctraconic acid onto an Ethylene-Propylene-DieneTerpolymer(EPDM)", Elast. Compos., 48, 39 (2013). https://doi.org/10.7473/EC.2013.48.1.39
  14. A. Bhattacharya, and B. N. Misra, "Grafting: a Versatile Means to Modify Polymers Techniques, Factors and Applications", Prog. Polym. Sci., 29, 767 (2004). https://doi.org/10.1016/j.progpolymsci.2004.05.002
  15. Z. M. O. Rzayev, "Graft Copolymers of Maleic Anhydride and Its Isosuructural Analogues: High Performance Engineering Materials", Int. Rev. Chem. Eng., 3, 153 (2011).
  16. F. Fenouillot, P. Cassagnau, and V. Bounor-Legare, "Reactive Processing of Thermoplastic Polymers: A Review of the Fundamental Aspects" Int. Polym. Proc., 22, 218 (2007). https://doi.org/10.3139/217.2032
  17. T. L. Dimitrova, C. Colletti, and F. P. La Mantia, "Melt Free Radical Grafting of an Oxazoline Compound onto HDPE", Bulg. J. Phys., 32, 204 (2005).
  18. T. L. Dimitrova, F. P. La Mantia, F. Pilati, M. Toselli, A. Valenza, and A. Visco, "On the Compatibilization of PET/ HDPE Blends Through a New Class of Copolyesters", Polymer, 41, 4817 (2000). https://doi.org/10.1016/S0032-3861(99)00709-0
  19. S. S. Pesetskin, B. Jurkowski, and O. A. Makarenko, "Free Radical Grafting of Itaconic Acid and Glycidyl Methacrylate onto PP Initiated by Oraganic Peroxides", J. Appl. Polym. Sci., 86, 64 (2002). https://doi.org/10.1002/app.10911
  20. M. Xanthos, "Reactive Extrusion: Principles and Practies", Hanser Gardner Publications, Munich 1992.
  21. N. G. Gaylord, R. Mehta, V. Kumar, M. Tazi, "High density polyethylene-g-maleic anhydride preparation in presence of electron donors", J. Appl. polym. Sci., 38, 359 (1989). https://doi.org/10.1002/app.1989.070380217
  22. B. De Roover, M. Sclavons, V. Carlier, J. Delaux, R. Legras, A. Momtas, "Molecular characterization of maleic anhydride-functionalized polypropylene", J. Appl. Polym. Sci. Part A: Polym Chem., 33, 829 (1955).
  23. S. S. Pesetskin, B. Jurkowski, Y. M. Krivoguz, and Y. A. Olkhov, "Solubility of Additives: Grafting of Itaconic Acid onto LDPE by Reactive Extrusion. II. Effect of Stabilizers", J. Appl. Polym. Sci., 81, 3439 (2001). https://doi.org/10.1002/app.1800
  24. S. S. Pesetskin, B. Jurkowski, Y. M. Krivoguz, and R. Urbanowicz, "Itaconic Acid Grafting on LDPE Blended in Molten State", J. Appl. Polym. Sci., 65, 1493 (1997). https://doi.org/10.1002/(SICI)1097-4628(19970822)65:8<1493::AID-APP6>3.0.CO;2-B
  25. O. P. Grigoryeva, and J. K. Kocsis, "Melt Grafting of Maleic Anhydride onto an Ethylene-Propylene-Diene Terpoltmer (EPDM)", Eur. Polym. J., 36, 1419 (2000). https://doi.org/10.1016/S0014-3057(99)00205-0
  26. B. Jurkowski, S. S. Pesetskin, Y. A. Olkhov, YU. M. Krivoguz, and K. Kelar, "Investigation of Molecular Structure of LDPE Modified by Itaconic Acid Grafting", J. Appl. Polym. Sci., 71, 1771 (1999). https://doi.org/10.1002/(SICI)1097-4628(19990314)71:11<1771::AID-APP6>3.0.CO;2-6