DOI QR코드

DOI QR Code

Silicide-Enhanced Rapid Thermal Annealing을 이용한 다결정 Si 박막의 제조 및 다결정 Si 박막 트랜지스터에의 응용

Fabrication of Polycrystalline Si Films by Silicide-Enhanced Rapid Thermal Annealing and Their Application to Thin Film Transistors

  • 김존수 (한국과학기술원 신소재공학과) ;
  • 문선홍 (한국과학기술원 신소재공학과) ;
  • 양용호 (한국과학기술원 신소재공학과) ;
  • 강승모 (한국과학기술원 신소재공학과) ;
  • 안병태 (한국과학기술원 신소재공학과)
  • Kim, Jone Soo (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Moon, Sun Hong (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Yang, Yong Ho (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kang, Sung Mo (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Ahn, Byung Tae (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology)
  • 투고 : 2014.04.28
  • 심사 : 2014.07.25
  • 발행 : 2014.09.27

초록

Amorphous (a-Si) films were epitaxially crystallized on a very thin large-grained poly-Si seed layer by a silicide-enhanced rapid thermal annealing (SERTA) process. The poly-Si seed layer contained a small amount of nickel silicide which can enhance crystallization of the upper layer of the a-Si film at lower temperature. A 5-nm thick poly-Si seed layer was then prepared by the crystallization of an a-Si film using the vapor-induced crystallization process in a $NiCl_2$ environment. After removing surface oxide on the seed layer, a 45-nm thick a-Si film was deposited on the poly-Si seed layer by hot-wire chemical vapor deposition at $200^{\circ}C$. The epitaxial crystallization of the top a-Si layer was performed by the rapid thermal annealing (RTA) process at $730^{\circ}C$ for 5 min in Ar as an ambient atmosphere. Considering the needle-like grains as well as the crystallization temperature of the top layer as produced by the SERTA process, it was thought that the top a-Si layer was epitaxially crystallized with the help of $NiSi_2$ precipitates that originated from the poly-Si seed layer. The crystallinity of the SERTA processed poly-Si thin films was better than the other crystallization process, due to the high-temperature RTA process. The Ni concentration in the poly-Si film fabricated by the SERTA process was reduced to $1{\times}10^{18}cm^{-3}$. The maximum field-effect mobility and substrate swing of the p-channel poly-Si thin-film transistors (TFTs) using the poly-Si film prepared by the SERTA process were $85cm^2/V{\cdot}s$ and 1.23 V/decade at $V_{ds}=-3V$, respectively. The off current was little increased under reverse bias from $1.0{\times}10^{-11}$ A. Our results showed that the SERTA process is a promising technology for high quality poly-Si film, which enables the fabrication of high mobility TFTs. In addition, it is expected that poly-Si TFTs with low leakage current can be fabricated with more precise experiments.

키워드

참고문헌

  1. J. Y. W. Seto, J. Appl. Phys., 46, 5247 (1975). https://doi.org/10.1063/1.321593
  2. G. Baccarani, B. Ricco, and G. Spandini, J. Appl. Phys., 49, 5565 (1978). https://doi.org/10.1063/1.324477
  3. H. Zhang, N. Kusumoto, T. Imushima, and S. Yamazaki, IEEE Electron Device Lett., 13, 297 (1992). https://doi.org/10.1109/55.145059
  4. R. C. Cammarata, C. V. Thompson, C. Hayzelden, and K. N. Tu, J. Mater. Res., 10, 2133 (1990).
  5. C. Hayzelden and J. L. Batstone, J. Appl. Phys., 73, 8279 (1993). https://doi.org/10.1063/1.353446
  6. S. W. Lee, S. K. Joo, IEEE Electron Dev. Lett., 17, 160 (1996). https://doi.org/10.1109/55.485160
  7. D. K. Sohn, J. N. Lee, S. W. Kang, B. T. Ahn, Jap. J. Appl. Phys., 35, 1005 (1996). https://doi.org/10.1143/JJAP.35.1005
  8. J. Jang, J. Y. Oh, S. K. Kim, Y. J. Choi, S. Y. Yoon, C. O. Kim, Nature, 395, 481 (1998). https://doi.org/10.1038/26711
  9. S. I. Jun, Y. H. Yang, J. B. Lee, and D. K. Choi, Appl. Phys. lett., 75, 2235 (1999). https://doi.org/10.1063/1.124975
  10. J. N. Lee, Y. W. Choi, B. J. Lee, B. T. Ahn, J. Appl. Phys., 82, 2918 (1997). https://doi.org/10.1063/1.366125
  11. J. H. Eom, K. U. Lee, and B. T. Ahn, Electrochem. Solid State Lett., 8, G65 (2005). https://doi.org/10.1149/1.1857111
  12. J. H. Eom, K. U. Lee, B. T. Ahn, J. Electrochem. Soc., 154, H194 (2007). https://doi.org/10.1149/1.2429047
  13. J. H. Choi, D. Y. Kim, B. K. Choo, W. S. Sohn, and J. Jang, Electrochem. Solid State Lett., 6, G16 (2003). https://doi.org/10.1149/1.1527411
  14. S. M. Kang, K. M. Ahn, B. T. Ahn, J. Electrochem. Soc., 159, H29 (2012). https://doi.org/10.1149/2.039201jes
  15. K. M. Ahn. S. M. Kang, B. T. Ahn, Curr. Appl. Phys., 12, 1454 (2012). https://doi.org/10.1016/j.cap.2012.04.010
  16. Y. H. Yang, K. M. Ahn, B. T. Ahn, Electrochem. Solid State Lett., 13, J92 (2010). https://doi.org/10.1149/1.3432320
  17. Y. H. Yang, K. M. Ahn, S. M. Kang, S. H. Moon, B. T. Ahn, H. S. Kwon, Electron. Mater. Lett., in publication.
  18. I. Gordon, D. Van Gestel, K. Van Nieuwenhuysen, L. Carnel, G. Beaucarne and J. Poortmans, Thin Solid Films, 487, 113 (2005). https://doi.org/10.1016/j.tsf.2005.01.047
  19. A. Marmorstein, A. T. Voutsas and R. Solanki. J. Appl. Phys., 82, 4303 (1997). https://doi.org/10.1063/1.366238
  20. J. H. Ahn and B. T. Ahn, J. Electrochem. Soc., 148, H115 (2001). https://doi.org/10.1149/1.1386388