DOI QR코드

DOI QR Code

Enhancement of Dye-Sensitized Solar Cell Efficiency by Spherical Voids in Nanocrystalline ZnO Electrodes

  • Hieu, Hoang Nhat (Department of Materials Science and Engineering, Chungnam National University) ;
  • Dao, Van-Duong (Department of Chemical Engineering, Chungnam National University) ;
  • Vuong, Nguyen Minh (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Dojin (Department of Materials Science and Engineering, Chungnam National University) ;
  • Choi, Ho-Suk (Department of Chemical Engineering, Chungnam National University)
  • Received : 2014.06.17
  • Accepted : 2014.07.31
  • Published : 2014.09.27

Abstract

Light scattering enhancement is widely used to enhance the optical absorption efficiency of dye-sensitized solar cells. In this work, we systematically analyzed the effects of spherical voids distributed as light-scattering centers in photoanode films made of an assembly of zinc oxide nanoparticles. Spherical voids in electrode films were formed using a sacrificial template of polystyrene (PS) spheres. The diameter and volume concentration of these spheres was varied to optimize the efficiency of dye-sensitized solar cells. The effects of film thickness on this efficiency was also examined. Electrochemical impedance spectroscopy was performed to study electron transport in the electrodes. The highest power conversion efficiency of 4.07 % was observed with $12{\mu}m$ film thickness. This relatively low optimum thickness of the electrode film is due to the enhanced light absorption caused by the light scattering centers of voids distributed in the film.

Keywords

References

  1. B. O'Regan and M. Gratzel, Nature, 353, 737 (1991). https://doi.org/10.1038/353737a0
  2. M. Grätzel, Inorg. Chem., 44, 6841 (2005). https://doi.org/10.1021/ic0508371
  3. V. -D. Dao, S. -H. Kim, H. -S. Choi, J. -H. Kim, H. -O. Park and J. -K. Lee, J. Phys. Chem. C, 115, 25529 (2011). https://doi.org/10.1021/jp208295b
  4. V. -D. Dao, C. Q. Tran, S. -H. Ko and H. -S. Choi, J. Mater. Chem. A, 1, 4436 (2013). https://doi.org/10.1039/c3ta10319f
  5. M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Gratzel, J. Am. Chem. Soc., 127, 16835 (2005). https://doi.org/10.1021/ja052467l
  6. M. Quintana, T. Edvinsson, A. Hagfeldt and G. Boschloo, J. Phys. Chem. C, 111, 1035 (2006).
  7. Q. Zhang, C. S. Dandeneau, X. Zhou and G. Cao, Adv. Mater., 21, 4087 (2009). https://doi.org/10.1002/adma.200803827
  8. W. -C. Chang, C. -H. Lee, W. -C. Yu and C. -M. Lin, Nanoscale Res. Lett., 7, 1 (2012). https://doi.org/10.1186/1556-276X-7-1
  9. J. Ferber and J. Luther, Sol. Energy Mater. Sol. Cells, 54, 265 (1998). https://doi.org/10.1016/S0927-0248(98)00078-6
  10. M. Hamadanian, H. Sayahi and A. R. Zolfagharici, J. Nanostructures, 1, 139 (2012)
  11. Q. Zhang, T. P. Chou, B. Russo, S. A. Jenekhe and G. Cao, Adv. Funct. Mater., 18, 1654 (2008). https://doi.org/10.1002/adfm.200701073
  12. M. Kevin, Y. H. Fou, A. S. W. Wong and G. W. Ho, Nanotechnology, 21, 315602 (2010). https://doi.org/10.1088/0957-4484/21/31/315602
  13. C. H. Lee and H. W. Choi, Mol. Cryst. Liq. Cryst., 565, 124 (2012). https://doi.org/10.1080/15421406.2012.693305
  14. S. Hore, P. Nitz, C. Vetter, C. Prahl, M. Niggemann and R. Kern, Chem. Comm., 2011 (2005).
  15. X. Sheng, J. Zhai, L. Jiang and D. Zhu, Appl. Phys. A, 96, 473 (2009). https://doi.org/10.1007/s00339-009-5273-4
  16. H. N. Hieu, N. M. Vuong, H. Jung, D. M. Jang, D. Kim, H. Kim and S. -K. Hong, J. Mater. Chem., 22, 1127 (2012). https://doi.org/10.1039/c1jm13696h
  17. V. -D. Dao, H. -S. Choi and K. -D. Jung, Mater. Lett., 92, 11 (2013). https://doi.org/10.1016/j.matlet.2012.10.039
  18. Q. Zhang, T. P. Chou, B. Russo, S. A. Jenekhe and G. Cao, Ang. Chem. Int. Edit., 47, 2402 (2008). https://doi.org/10.1002/anie.200704919
  19. S. Chang, Q. Li, X. Xiao, K. Y. Wong and T. Chen, Energy Environ. Sci., 5, 9444 (2012) https://doi.org/10.1039/c2ee22657j
  20. H. N. Hieu, N. Q. Dung, J. Kim and D. Kim, Nanoscale, 5, 5530 (2013). https://doi.org/10.1039/c3nr00889d
  21. H. N. Hieu, N. M. Vuong and D. Kim, J. Electrochem. Soc., 160, H852 (2013). https://doi.org/10.1149/2.108311jes