DOI QR코드

DOI QR Code

Effect of Heat-Treatment on the Crystallization of B Powder and Critical Current Density Property of MgB2 Superconductor

보론 분말의 결정화에 대한 열처리 영향과 MgB2 초전도체의 임계전류밀도 특성

  • You, Byung Youn (Neutron Utilization Technology Division, Korea Atomic Energy Research Institute) ;
  • Kim, Chan-Joong (Neutron Utilization Technology Division, Korea Atomic Energy Research Institute) ;
  • Park, Soon-Dong (Neutron Utilization Technology Division, Korea Atomic Energy Research Institute) ;
  • Jun, Byung-Hyuk (Neutron Utilization Technology Division, Korea Atomic Energy Research Institute)
  • 유병윤 (한국원자력연구원 중성자응용기술부) ;
  • 김찬중 (한국원자력연구원 중성자응용기술부) ;
  • 박순동 (한국원자력연구원 중성자응용기술부) ;
  • 전병혁 (한국원자력연구원 중성자응용기술부)
  • Received : 2014.05.30
  • Accepted : 2014.07.31
  • Published : 2014.09.27

Abstract

The crystallization effects of boron (B) powder on the phase, full width at half maximum (FWHM) values, and critical properties were investigated for in-situ reacted $MgB_2$ bulk superconductors. The semi-crystalline B powder was heat-treated at different temperatures of 1000, 1300 and $1500^{\circ}C$ for 5 hours in an Ar atmosphere. Then, using as-received and heat-treated B powders, the $MgB_2$ samples were prepared at $600^{\circ}C$ for 40 hours in an Ar atmosphere. As the heat-treatment temperature of the B powder increased, both the particle size of the B powder and crystalline phase increased. In the case of $MgB_2$ samples using B powders heat-treated at above $1300^{\circ}C$, unreacted magnesium (Mg) and B remained due to the improved crystallinity of the B powder. As the heat-treatment temperature of B powder increased, the critical current density of $MgB_2$ decreased continuously due to the reduction of grain boundary density and superconducting volume caused by unreacted Mg and B.

Keywords

References

  1. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zentitani, and J. Akimitsu, Nature 410, 63 (2001). https://doi.org/10.1038/35065039
  2. R. Musenich, P. Fabbricatore, C. Fanciulli, C. Ferdeghini, and G. Grasso, IEEE Trans. Appl. Supercond. 14, 365 (2004). https://doi.org/10.1109/TASC.2004.829671
  3. M. Takahashi, K. Tanaka, M. Okada, H. Kitaguchi, and H. Kumakura, IEEE Trans. Appl. Supercond. 16, 1431 (2006). https://doi.org/10.1109/TASC.2006.869993
  4. R. Musenich, P. Fabbricatore, S. Farinon, M. Greco, M. Modica, R. Marabotto, R. Penco, M. Razeti, and D. Nardelli, Supercond. Sci. Technon. 19, S126 (2006). https://doi.org/10.1088/0953-2048/19/3/018
  5. J. Bascuan, H. Lee, E. S. Bobrov, S. Hahn, Y. Iwasa, M. Tomsic, and M. Rindfleisch, IEEE trans. Appl, Supercond 16, 1427 (2006). https://doi.org/10.1109/TASC.2005.864456
  6. D. Larbalestier, A. Gurevich, D.M felddmann, and A Polyanskii, Nature 414, 368 (2001) . https://doi.org/10.1038/35104654
  7. P. Mikheenko, E. Martínez, A. Bevan, J. S. Abell, and J. L. MacManus-Driscoll, Supercond. Sci. Technol. 20, S264 (2007). https://doi.org/10.1088/0953-2048/20/9/S22
  8. A. Yamamoto, J. Shimoyama, S. Ueda, Y. Katsura, S. Horii, and K. Kishio, Supercond. Sci. Technol. 18, 116 (2005). https://doi.org/10.1088/0953-2048/18/1/019
  9. B. -H. Jun, N. K Kim, K. S. Tan, and C. -J. Kim, J. Alloys Compd. 492, 446 (2010). https://doi.org/10.1016/j.jallcom.2009.11.134
  10. B. -H. Jun, S. D. Park, and C. -J. Kim, J. Alloys Compd. 535, 27 (2012). https://doi.org/10.1016/j.jallcom.2012.04.030
  11. G. K. Williamson, and W. H. Hall, Acta Metall. 1, 22 (1953). https://doi.org/10.1016/0001-6160(53)90006-6