DOI QR코드

DOI QR Code

Impregnation Behavior of SiCf/SiC Composites Depending on the Polycarbosilane Precursor and Solvent

폴리카보실란의 종류와 용제에 따른 SiCf/SiC복합재의 충진 거동

  • 김선한 (한국원자력연구원, 경수로핵연료기술개발부) ;
  • 정양일 (한국원자력연구원, 경수로핵연료기술개발부) ;
  • 박정용 (한국원자력연구원, 경수로핵연료기술개발부) ;
  • 김현길 (한국원자력연구원, 경수로핵연료기술개발부) ;
  • 구양현 (한국원자력연구원, 경수로핵연료기술개발부) ;
  • 홍순익 (충남대학교, 에너지기능재료 Lab.)
  • Received : 2014.04.22
  • Accepted : 2014.08.11
  • Published : 2014.09.27

Abstract

Process conditions for the impregnation of polycarbosilane preceramic polymer into SiC-based composites were investigated. Two kinds of preceramic polymer (PCP) was impregnated into SiC-fiber fabrics with different solvents of n-hexane and divinylbenzene (DVB). Both microstructural observations and mechanical tests were conducted to evaluate the impregnation. The matrix phases were particulated in the case of hexane solvents. Apparent relative density of the matrix was about 78.8%. The density of matrix was increased to about 96.1-98.8% when the DVB was used; however, brittle fracture was observed during a bending test. The modulus of toughness was less than $0.74J/m^3$. The fabric impregnated with a mixed PCP-dissolved solution showed intermediate characteristics with relative high density of filling (apparent density of ~96.1%) as well as proper bending behavior. The modulus of toughness was increased to about $5.31J/m^3$. The composites developed by changing the precursor and solvent suggested the possibility of fabricating SiCf/SiC composites without a fiber to matrix interphase coating.

Keywords

References

  1. D. O. Northood, Mater. Des., 6, 58 (1985). https://doi.org/10.1016/0261-3069(85)90165-7
  2. B. Cheng, ASTM STP, 1295, 137 (1996).
  3. D. G. Franklin, J. ASTM Int., 7, JAI 103032 (2010).
  4. C. Lemaignan, Comprehensive Nuclear Materials P. 217- 232, Elsevier, The Netherlands (2012).
  5. C. J. Rosa, J. Less-Common Metals, 16, 173 (1968). https://doi.org/10.1016/0022-5088(68)90015-5
  6. O. Coindrean, C. Duriez and S. Ederli, J. Nucl. Mater., 405, 207 (2010). https://doi.org/10.1016/j.jnucmat.2010.07.038
  7. M. Amaya and F. Nagase, J. Nucl. Mater., 440, 457 (2013). https://doi.org/10.1016/j.jnucmat.2013.01.292
  8. L. L. Snead, T. Nozawa, Y. Katoh, T. -S. Byun, S. Kondo and D. A. Petti, J. Nucl. Mater., 371, 329 (2007). https://doi.org/10.1016/j.jnucmat.2007.05.016
  9. K. Yueh, D. Carpenter and H. Feinroth, Nucl. Eng. Int., 55, 14 (2010).
  10. C. P. Deck, H. E. Khalifa, B. Sammuli, T. Hilsabeck and C. A. Back, Prog. Nucl. Energy, 57, 38 (2012). https://doi.org/10.1016/j.pnucene.2011.10.002
  11. L. Hallstadius, S. Johnson and Ed Lahoda, Prog. Nucl. Energy, 57, 71 (2012). https://doi.org/10.1016/j.pnucene.2011.10.008
  12. Y. -I. Jung, B. -K. Choi, H. -G. Kim, D. -J. Park and J. -Y. Park, Trans. Korean Nucl. Soc., Jeju, Korea (2012).
  13. S. -H. Kim, Y. -I. Jung, D. -J. Park, H. -G. Kim, J. -Y. Park and S. -I. Hong, Trans. Korean Nucl. Soc., Gwangju, Korea (2013).
  14. S. Yajima, Y. Hasegawa, K. Okamura and T. Matsuzawa, Nature 273, 525 (1978). https://doi.org/10.1038/273525a0
  15. E. Bouillon, F. Langlais, R. Pailler, R. Naslain, F. Cruege and P. V. Huong, J. Mater. Sci., 26, 1333 (1991). https://doi.org/10.1007/BF00544474
  16. H. Q. Ly, R. Taylor, R. J. Day and F. Heatley., J. Mater. Sci., 36, 4037 (2001). https://doi.org/10.1023/A:1017942826657
  17. H. Li, L. Zhang, L. Cheng, Y. Wang, Z. Yu, M. Huang, H. Tu and H. Xia, J. Mater. Sci., 43, 2806 (2008). https://doi.org/10.1007/s10853-008-2539-8
  18. Z. -Y. Chu, C. -X. Feng, Y. -C. Song, Y. -D. Wang, J. Wang, X. -D. Li and J. -Y. Xiao, J. Mater. Sci., 39, 2827 (2004). https://doi.org/10.1023/B:JMSC.0000021460.62608.57
  19. J. I. Kim, W. -J. Kim and J. Y. Park, J. Kor. Ceram. Soc., 42, 188 (2005). https://doi.org/10.4191/KCERS.2005.42.3.188
  20. T. Hinoki, W. Yang, T. Nozawa, T. Shibayama, Y. Katoh and A. Kohyama, J. Nucl. Mater., 289, 23 (2001). https://doi.org/10.1016/S0022-3115(00)00678-4
  21. H. Yu, X. Zhou, W. Zhang, H. Peng and C. Zhang, J. Nucl. Mater., 442, 53 (2013). https://doi.org/10.1016/j.jnucmat.2013.08.038
  22. K. Shimoda, J. -S. Park, T. Hinoki and A. Kohyama, Mechanical Properties and Performance of Engineering Cermics and Composites III, p.207, John Wiley & Sons, NJ, USA (2008).
  23. T. Hinoki and K. Shimoda, in Proceedings of LWR Fuel Performance / TopFuel 2013 (Charlotte, NC, September, 2013) p.1060.